Skip to main content
Log in

Toll-like receptors, immunoproteasome and regulatory T cells in children with Henoch–Schönlein purpura and primary IgA nephropathy

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Henoch–Schönlein purpura (HSP) nephritis and primary IgA nephropathy (pIgAN) present with glomerular IgA deposits, but differ with regard to clinical features. The suspected involvement of different immune system pathways is largely unknown.

Methods

This study was aimed at investigating some of the immunological features including Toll-like receptors (TLR), proteasome (PS)/immunoproteasome (iPS) switch, and the regulatory T cell system (Treg/Th17 cells) in 63 children with HSP with/without renal involvement and in 25 with pIgAN. Real-time PRC (Taqman) was used to quantify mRNA levels in peripheral blood mononuclear cells (PBMC).

Results

The expression of mRNAs encoding for TLR4 in both HSP and pIgAN was higher than in controls (HC) and in both diseases FoxP3mRNA and TGF-β1mRNA expression was significantly lower than in HC. A switch from PS to iPS (LMP2/β1) was detected only in PBMC of HSP and it correlated with the level of TLR2mRNA, which was selectively increased only in children with HSP.

Conclusion

Children with HSP and pIgAN present with similar signs of engagement of the innate immunity and regulatory T cell depression. The increased immunoproteasome switch, which correlated with TLR2 activation, may suggest an innate immunity pathway peculiar to HSP vasculitic presentation. This research area also deserves further investigation for possible therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Davin JC (2011) Henoch-Schonlein purpura nephritis: pathophysiology, treatment, and future strategy. Clin J Am Soc Nephrol 6:679–689

    Article  PubMed  Google Scholar 

  2. Coppo R (2008) Pediatric IgA nephropathy: clinical and therapeutic perspectives. Semin Nephrol 28:18–26

    Article  PubMed  Google Scholar 

  3. Davin JC, Ten Berge IJ, Weening JJ (2001) What is the difference between IgA nephropathy and Henoch-Schönlein purpura nephritis? Kidney Int 59:823–834

    Article  CAS  PubMed  Google Scholar 

  4. Calvo-Río V, Loricera J, Martín L, Ortiz-Sanjuán F, Alvarez L, González-Vela MC, González-Lamuño D, Mata C, Gortázar P, Rueda-Gotor J, Arias M, Peiró E, Martínez-Taboada VM, González-Gay MA, Blanco R (2013) Henoch-Schönlein purpura nephritis and IgA nephropathy: a comparative clinical study. Clin Exp Rheumatol 31:S45–S51

    PubMed  Google Scholar 

  5. Bogdanovic R (2009) Henoch-Schönlein purpura nephritis in children: Risk factors, prevention and treatment. Acta Paediatr 98:1882–1889

    Article  PubMed  Google Scholar 

  6. Coppo R, Mazzucco G, Cagnoli L, Lupo A, Schena FP (1997) Longterm prognosis of Henoch-Schönlein nephritis in adults and children. Italian Group of Renal Immunopathology Collaborative Study on Henoch-Schönlein purpura. Nephrol Dial Transplant 12:2277–2283

    Article  CAS  PubMed  Google Scholar 

  7. Edström Halling S, Söderberg MP, Berg UB (2012) Predictors of outcome in paediatric IgA nephropathy with regard to clinical and histopathological variables (Oxford classification). Nephrol Dial Transplant 27:715–722

    Article  PubMed  Google Scholar 

  8. Shima Y, Nakanishi K, Hama T, Mukaiyama H, Togawa H, Sako M, Kaito H, Nozu K, Tanaka R, Iijima K, Yoshikawa N (2013) Spontaneous remission in children with IgA nephropathy. Pediatr Nephrol 28:71–76

    Article  PubMed  Google Scholar 

  9. Novak J, Julian BA, Mestecky J, Renfrow MB (2012) Glycosylation of IgA1 and pathogenesis of IgA nephropathy. Semin Immunopathol 34:365–382

    Article  CAS  PubMed  Google Scholar 

  10. Lau KK, Wyatt RJ, Moldoveanu Z, Tomana M, Julian BA, Hogg RJ, Lee JY, Huang WQ, Mestecky J, Novak J (2007) Serum levels of galactose-deficient IgA in children with IgA nephropathy and Henoch-Schönlein purpura. Pediatr Nephrol 22:2067–2072

    Article  PubMed  Google Scholar 

  11. Suzuki H, Fan R, Zhang Z, Brown R, Hall S, Julian BA, Chathan WW, Suzuki Y, Wyatt RJ, Moldoveanu Z, Lee JY, Robinson J, Tomana M, Tomino Y, Mestecky J, Novak J (2009) Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest 119:1668–1677

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Wyatt RJ, Julian BA (2013) IgA nephropathy. N Engl J Med 368:2402–2414

    Article  CAS  PubMed  Google Scholar 

  13. Coppo R, Amore A, Peruzzi L, Vergano L, Camilla R (2010) Innate immunity and IgA nephropathy. J Nephrol 23:626–632

    PubMed  Google Scholar 

  14. Rigante D, Castellazzi L, Bosco A, Esposito S (2013) Is there a crossroad between infections, genetics, and Henoch-Schönlein purpura? Autoimmun Rev 12:1016–1021

    Article  PubMed  Google Scholar 

  15. Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449:819–826

    Article  CAS  PubMed  Google Scholar 

  16. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  CAS  PubMed  Google Scholar 

  17. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  CAS  PubMed  Google Scholar 

  18. Beutler BA (2009) TLRs and innate immunity. Blood 113:1399–1407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Rock KL, York IA, Saric T (2002) Protein degradation and generation of MHC class I-presented peptides. Adv Immunol 80:1–70

    Article  CAS  PubMed  Google Scholar 

  20. Macagno A, Kuehn L, de Giuli R, Groettrup M (2001) Pronounced up-regulation of the PA28alpha/β proteasome regulator but little increase in the steady state. Content of immunoproteasome during dendritic cell maturation. Eur J Immunol 31:3271–3280

    Article  CAS  PubMed  Google Scholar 

  21. Pedruzzi LM, Stockler-Pinto MB, Leite M Jr, Mafra D (2012) Nrf2-keap1 system versus NF-κB: the good and the evil in chronic kidney disease? Biochimie 94:2461–2466

    Article  CAS  PubMed  Google Scholar 

  22. Sakaguchi S, Wing K, Miyara M (2007) Regulatory T cells—a brief history and perspective. Eur J Immunol 37 [Suppl 1]:S116–S123

    Article  CAS  PubMed  Google Scholar 

  23. Beyer M, Schultze JL (2011) Plasticity of Treg cells: is reprogramming of Treg cells possible in the presence of FOXP3? Int Immunopharmacol 11:555–560

    Article  CAS  PubMed  Google Scholar 

  24. Turner JE, Paust HJ, Steinmetz OM, Panzer U (2010) The Th17 immune response in renal inflammation. Kidney Int 77:1070–1075

    Article  CAS  PubMed  Google Scholar 

  25. Coarthay A (2009) How do regulatory T cells work? Scand J Immunol 70:326–366

    Article  Google Scholar 

  26. Ozen S, Pistorio A, Iusan SM, Bakkaloglu A, Herlin T, Brik R, Buoncompagni A, Lazar C, Bilge I, Uziel Y, Rigante D, Cantarini L, Hilario MO, Silva CA, Alegria M, Norambuena X, Belot A, Berkun Y, Estrella AI, Olivieri AN, Alpigiani MG, Rumba I, Sztajnbok F, Tambic-Bukovac L, Breda L, Al-Mayouf S, Mihaylova D, Chsnyk V, Sengler C, Klein-Gitelman M, Djeddi D, Nuno L, Pruunsild C, Brunner J, Kondi A, Pagava K, Pederzoli S, Ruperto N (2010) EULAR/PRINTO/PRES criteria for Henoch-Schonlein purpura, childhood polyarteritis nodosa, childhood Wegener granulomatosis and childhood Takayasu arteritis: Ankara, 2008. II. Final classification criteria. Ann Rheum Dis 69:798–806

    Article  PubMed  Google Scholar 

  27. Schwartz GJ, Work DF (2009) Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol 4:1832–1843

    Article  PubMed  Google Scholar 

  28. Coppo R, Camilla R, Amore A, Peruzzi L, Daprà V, Loiacono E, Vatrano S, Rollino C, Sepe V, Rampino T, Dal Canton A (2010) Toll-like receptor 4 expression is increased in circulating mononuclear cells of patients with immunoglobulin A nephropathy. Clin Exp Immunol 159:73–81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Coppo R, Camilla R, Alfarano A, Balegno S, Mancuso D, Peruzzi L, Amore A, Dal Canton A, Sepe V, Tovo P (2009) Upregulation of the immunoproteasome in peripheral blood mononuclear cells of patients with IgA nephropathy. Kidney Int 75:536–541

    Article  CAS  PubMed  Google Scholar 

  30. Lin FJ, Jiang GR, Shan JP, Zhu C, Zou J, Wu XR (2012) Imbalance of regulatory T cells to Th17 cells in IgA nephropathy. Scand J Clin Lab Invest 72:221–229

    Article  CAS  PubMed  Google Scholar 

  31. Jung YO, Cho ML, Lee SY, Oh HJ, Park JS, Park MK, Park MJ, Ju JH, Kim SI, Kim HY, Park SH, Min JK (2009) Synergism of toll-like receptor 2 (TLR2), TLR4, and TLR6ligation on the production of tumor necrosis factor (TNF)-alpha in a spontaneous arthritis animal model of interleukin (IL)-1 receptor antagonist-deficient mice. Immunol Lett 123:138–143

    Article  CAS  PubMed  Google Scholar 

  32. Shirey KA, Lai W, Scott AJ, Lipsky M, Mistry P, Pletneva LM, Karp CL, McAlees J, Gioannini TL, Weiss J, Chen WH, Ernst RK, Rossignol DP, Gusovsky F, Blanco JC, Vogel SN (2013) The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature 497:498–502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Mersmann J, Iskandar F, Latsch K, Habeck K, Sprunck V, Zimmermann R, Schumann RR, Zacharowski K, Koch A (2013) Attenuation of myocardial injury by HMGB1 blockade during ischemia/reperfusion is toll-like receptor 2-dependent. Mediators Inflamm 2013:174168

    Article  PubMed Central  PubMed  Google Scholar 

  34. Savva A, Roger T (2013) Targeting Toll-like receptors: promising therapeutic strategies for the management of sepsis-associated pathology and infectious diseases. Front Immunol 18:4–387

    Google Scholar 

  35. Niewerth D, Franke NE, Jansen G, Assaraf YG, van Meerloo J, Kirk CJ, Degenhardt J, Anderl J, Schimmer AD, Zweegman S, de Haas V, Horton TM, Kaspers GJ, Cloos J (2013) Higher ratio immune versus constitutive proteasome level as novel indicator of sensitivity of pediatric acute leukemia cells to proteasome inhibitors. Haematologica 98:1896–1904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosanna Coppo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donadio, M.E., Loiacono, E., Peruzzi, L. et al. Toll-like receptors, immunoproteasome and regulatory T cells in children with Henoch–Schönlein purpura and primary IgA nephropathy. Pediatr Nephrol 29, 1545–1551 (2014). https://doi.org/10.1007/s00467-014-2807-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-014-2807-6

Keywords

Navigation