Skip to main content
Log in

Isogeometric analysis of a dynamic thermo-mechanical phase-field model applied to shape memory alloys

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper focuses on the numerical simulation of martensitic transformations in shape memory alloys (SMAs) using a phase-field model. We developed a dynamic thermo-mechanical model for SMAs, using strain based order parameter, having a bi-directional coupling between structural and thermal physics via strain, strain rate and temperature. The model involves fourth order spatial derivatives representing a domain wall. We propose an isogeometric analysis numerical formulation for straightforward solution to the fourth order differential equations. We present microstructure evolution under different loading conditions and dynamic loading simulations of the evolved microstructures of SMAs of different geometries to illustrate the flexibility, accuracy and stability of our numerical method. The simulation results are in agreement with the numerical and experimental results from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Ahluwalia R, Lookman T, Saxena A (2006) Dynamic strain loading of cubic to tetragonal martensites. Acta Mater 54(8):2109–2120

    Article  Google Scholar 

  2. Ahluwalia R, Lookman T, Saxena A, Shenoy S (2004) Pattern formation in ferroelastic transitions. Phase Trans 77(5–7):457–467

    Article  Google Scholar 

  3. Auricchio F, Da Veiga LB, Hughes TJR, Reali A, Sangalli G (2010) Isogeometric collocation methods. Math Models Methods Appl Sci 20(11):2075–2107

    Article  MATH  MathSciNet  Google Scholar 

  4. Auricchio F, da Veiga LB, Hughes T, Reali A, Sangalli G (2012) Isogeometric collocation for elastostatics and explicit dynamics. Comput Methods Appl Mech Eng 249252:2–14

    Article  Google Scholar 

  5. Auricchio F, da Veiga LB, Kiendl J, Lovadina C, Reali A (2013) Locking-free isogeometric collocation methods for spatial Timoshenko rods. Comput Methods Appl Mech Eng 263:113–126

    Article  Google Scholar 

  6. Bazilevs Y, Calo V, Cottrell J, Evans J, Hughes T, Lipton S, Scott M, Sederberg T (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199(58):229–263

    Article  MATH  MathSciNet  Google Scholar 

  7. Bhattacharya K (2003) Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press, Oxford

    Google Scholar 

  8. Borden MJ, Verhoosel CV, Scott MA, Hughes TJ, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77–95

    Article  MathSciNet  Google Scholar 

  9. Bouville M, Ahluwalia R (2008) Microstructure and mechanical properties of constrained shape memory alloy nanograins and nanowires. Acta Mater 56(14):3558–3567

    Article  Google Scholar 

  10. Chen L (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32(1):113–140

    Article  Google Scholar 

  11. Chen L, Shen J (1998) Applications of semi-implicit Fourier-spectral method to phase field equations. Comput Phys Commun 108(2):147–158

    Article  MATH  MathSciNet  Google Scholar 

  12. Comsol multiphysics finite element analysis software. http://www.comsol.com

  13. Cottrell J, Hughes T, Reali A (2007) Studies of refinement and continuity in isogeometric structural analysis. Comput Methods Appl Mech Eng 196(4144):4160–4183

    Article  MATH  MathSciNet  Google Scholar 

  14. Cottrell J, Reali A, Bazilevs Y, Hughes T (2006) Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng 195(4143):5257–5296

    Article  MATH  MathSciNet  Google Scholar 

  15. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New York

    Book  Google Scholar 

  16. De Lorenzis L, Temizer I, Wriggers P, Zavarise G (2011) A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Methods Eng 87(13):1278–1300

    MATH  Google Scholar 

  17. Dedè L, Borden MJ, Hughes TJ (2012) Isogeometric analysis for topology optimization with a phase field model. Arch Comput Methods Eng 19(3):427–465

    Article  MathSciNet  Google Scholar 

  18. Dhote R, Gomez H, Melnik R, Zu J (2013) Isogeometric analysis of coupled thermo-mechanical phase-field models for shape memory alloys using distributed computing. Procedia Comput Sci 18:1068–1076

    Article  Google Scholar 

  19. Dhote R, Melnik R, Zu J (2012) Dynamic thermo-mechanical coupling and size effects in finite shape memory alloy nanostructures. Comput Mater Sci 63:105–117

    Article  Google Scholar 

  20. Elguedj T, Bazilevs Y, Calo V, Hughes T (2008) B and F projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements. Comput Methods Appl Mech Eng 197(3340):2732–2762

    Article  MATH  Google Scholar 

  21. Falk F (1980) Model free energy, mechanics, and thermodynamics of shape memory alloys. Acta Metall 28(12):1773–1780

    Article  Google Scholar 

  22. Gadaj S, Nowacki W, Pieczyska E (2002) Temperature evolution in deformed shape memory alloy. Infrared Phys Technol 43(3–5):151–155

    Article  Google Scholar 

  23. Gomez H, Calo V, Bazilevs Y, Hughes T (2008) Isogeometric analysis of the Cahn–Hillard phase-field model. Comput Methods Appl Mech Eng 197(49–50):4333–4352

    Article  MATH  MathSciNet  Google Scholar 

  24. Gomez H, Hughes TJ, Nogueira X, Calo VM (2010) Isogeometric analysis of the isothermal Navier–Stokes–Korteweg equations. Comput Methods Appl Mech Eng 199(2528):1828–1840

    Article  MATH  MathSciNet  Google Scholar 

  25. Gomez H, Nogueira X (2012) An unconditionally energy-stable method for the phase field crystal equation. Comput Methods Appl Mech Eng 249252:52–61

    Article  MathSciNet  Google Scholar 

  26. Gomez H, Paris J (2011) Numerical simulation of asymptotic states of the damped Kuramoto–Sivashinsky equation. Phys Rev E 83:046702

    Article  Google Scholar 

  27. Greer J, Bertozzi A, Sapiro G (2006) Fourth order partial differential equations on general geometries. J Comput Phys 216(1):216–246

    Article  MATH  MathSciNet  Google Scholar 

  28. Hughes T, Cottrell J, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(3941):4135–4195

    Article  MATH  MathSciNet  Google Scholar 

  29. Kiendl J, Bazilevs Y, Hsu MC, Wchner R, Bletzinger KU (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199(3740):2403–2416

    Article  MATH  Google Scholar 

  30. Kim JY, Youn SK (2012) Isogeometric contact analysis using mortar method. Int J Numer Methods Eng 89(12):1559–1581

    Article  MATH  MathSciNet  Google Scholar 

  31. Levitas V, Preston D (2002) Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. I. Austenite \(\leftrightarrow \) martensite. Phys Rev B 66(134206):1–9

    Google Scholar 

  32. Liu J, Dede L, Evans JA, Borden MJ, Hughes TJ (2013) Isogeometric analysis of the advective Cahn–Hilliard equation: spinodal decomposition under shear flow. J Comput Phys 242:321–350

    Article  MathSciNet  Google Scholar 

  33. Mamivand M, Zaeem MA, El Kadiri H (2013) A review on phase field modeling of martensitic phase transformation. Comput Mater Sci 77:304–311

    Article  Google Scholar 

  34. Melnik R, Roberts A, Thomas KA (2000) Computing dynamics of copper-based SMA via center manifold reduction models. Comput Mater Sci 18:255–268

    Article  Google Scholar 

  35. Ng N, Ahluwalia R, Srolovitz D (2012) Domain patterns in free-standing nanoferroelectrics. Acta Mater 60(8):3632–3642

    Article  Google Scholar 

  36. Pieczyska E, Tobushi H (2010) Temperature evolution in shape memory alloy during loading in various conditions. In 10th international conference on quantitative infrared thermography, p 5–10

  37. Provatas N, Elder K (2010) Phase-field methods in materials science and engineering. Wiley-VCH, Weinheim

    Book  Google Scholar 

  38. Raknes S, Deng X, Bazilevs Y, Benson D, Mathisen K, Kvamsdal T (2013) Isogeometric rotation-free bending-stabilized cables: statics, dynamics, bending strips and coupling with shells. Comput Methods Appl Mech Eng 263:127–143

    Article  MathSciNet  Google Scholar 

  39. Salje E, Buckley A, Van Tendeloo G, Ishibashi Y, Nord G (1998) Needle twins and right-angled twins in minerals: comparison between experiment and theory. Am Mineral 83(7–8):811–822

    Google Scholar 

  40. Schillinger D, Ded L, Scott MA, Evans JA, Borden MJ, Rank E, Hughes TJ (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput Methods Appl Mech Eng 249252:116–150

    Article  Google Scholar 

  41. Scott M, Simpson R, Evans J, Lipton S, Bordas S, Hughes T, Sederberg T (2013) Isogeometric boundary element analysis using unstructured T-splines. Comput Methods Appl Mech Eng 254:197–221

    Google Scholar 

  42. Steinbach I (2009) Phase-field models in materials science. Model Simul Mater Sci Eng 17:073001–073031

    Article  MathSciNet  Google Scholar 

  43. Steinbach I, Shchyglo O (2011) Phase-field modelling of microstructure evolution in solids: perspectives and challenges. Curr Opin Solid State Mater Sci 15(3):87–92

    Google Scholar 

  44. Vilanova G, Colominas I, Gomez H (2013) Capillary networks in tumor angiogenesis: from discrete endothelial cells to phase-field averaged descriptions via isogeometric analysis. Int J Numer Methods Biomed Eng 29(10):1015–1037

    Google Scholar 

  45. Wang L, Melnik R (2007) Model reduction applied to square to rectangular martensitic transformations using proper orthogonal decomposition. Appl Numer Math 57(5):510–520

    Article  MATH  MathSciNet  Google Scholar 

  46. Yamanaka A, Takaki T, Tomita Y (2008) Elastoplastic phase-field simulation of self- and plastic accommodations in cubic tetragonal martensitic transformation. Mater Sci Eng A 491(1):378–384

    Article  Google Scholar 

Download references

Acknowledgments

RD and RM have been supported by NSERC and CRC program, Canada, and JZ by NSERC. HG was partially supported by the European Research Council through the FP7 Ideas Starting Grant program (Project # 307201) and by Consellería de Educación e Ordenación Universitaria (Xunta de Galicia). Their support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Dhote.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhote, R.P., Gomez, H., Melnik, R.N.V. et al. Isogeometric analysis of a dynamic thermo-mechanical phase-field model applied to shape memory alloys. Comput Mech 53, 1235–1250 (2014). https://doi.org/10.1007/s00466-013-0966-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0966-0

Keywords

Navigation