Skip to main content

Advertisement

Log in

Expression of ASIC2 in ciliated cells and stereociliated cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Acid-sensing ion channel 2 (ASIC2) plays a role as a mechanorecptor and acid receptor in the peripheral and central nervous systems. However, several recent studies have suggested that ASIC2 is expressed in several organs, in addition to the nervous system. We have examined the expression and distribution of ASIC2 in rat ciliated cells (trachea and oviduct) and stereociliated cells (epididymis, Corti organ, and ampullary crest) by immunohistochemistry and transmission electron microscopy (TEM). Imunohistochemistry revealed that ASIC2 was expressed in both ciliated cells and stereociliated cells, but the localization differed between these cell types. In ciliated cells, ASIC2 was coexpressed with a cilial marker (acetylated tubulin). In stereociliated cells stained with a stereocilial marker (phalloidin), ASIC2 was observed in the cell body. Observation by TEM suggested that ASIC2 expression was present at the apical side of the cilial membrane in ciliated cells and at the apical side of the cell body in stereociliated cells. This study thus indicates that the proton receptor ASIC2 is expressed in both ciliated and stereociliated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams CM, Anderson MG, Motto DG, Price MP, Johnson WA, Welsh MJ (1998) Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons. J Cell Biol 140:143–152

    Article  PubMed  CAS  Google Scholar 

  • Alvarez de la Rosa D, Zhang P, Shao D, White F, Canessa CM (2002) Functional implications of the localization and activity of acid-sensitive channels in rat peripheral nervous system. Proc Natl Acad Sci USA 99:2326–2331

    Article  PubMed  CAS  Google Scholar 

  • Babinski K, Catarsi S, Biagini G, Seguela P (2000) Mammalian ASIC2a and ASIC3 subunits co-assemble into heteromeric proton-gated channels sensitive to Gd3+. J Biol Chem 275:28519–28525

    Article  PubMed  CAS  Google Scholar 

  • Bassler EL, Ngo-Anh TJ, Geisler HS, Ruppersberg JP, Grunder S (2001) Molecular and functional characterization of acid-sensing ion channel (ASIC) 1b. J Biol Chem 276:33782–33787

    Article  PubMed  CAS  Google Scholar 

  • Canessa CM, Merillat AM, Rossier BC (1994) Membrane topology of the epithelial sodium channel in intact cells. Am J Physiol 267:C1682–C1690

    PubMed  CAS  Google Scholar 

  • Champigny G, Voilley N, Waldmann R, Lazdunski M (1998) Mutations causing neurodegeneration in Caenorhabditis elegans drastically alter the pH sensitivity and inactivation of the mammalian H+-gated Na+ channel MDEG1. J Biol Chem 273:15418–15422

    Article  PubMed  CAS  Google Scholar 

  • Chen CC, England S, Akopian AN, Wood JN (1998) A sensory neuron-specific, proton-gated ion channel. Proc Natl Acad Sci USA 95:10240–10245

    Article  PubMed  CAS  Google Scholar 

  • Clayton J, Jack CI, Ryall C, Tran J, Hilal E, Gosney M (2006) Tracheal pH monitoring and aspiration in acute stroke. Age Ageing 35:47–53

    Article  PubMed  Google Scholar 

  • Corey DP (2006) What is the hair cell transduction channel? J Physiol (Lond) 576:23–28

    Article  CAS  Google Scholar 

  • Coscoy S, Weille JR de, Lingueglia E, Lazdunski M (1999) The pre-transmembrane 1 domain of acid-sensing ion channels participates in the ion pore. J Biol Chem 274:10129–10132

    Article  PubMed  CAS  Google Scholar 

  • Crawford AC, Evans MG, Fettiplace R (1991) The actions of calcium on the mechano-electrical transducer current of turtle hair cells. J Physiol (Lond) 434:369–398

    CAS  Google Scholar 

  • Garcia-Anoveros J, Derfler B, Neville-Golden J, Hyman BT, Corey DP (1997) BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels. Proc Natl Acad Sci USA 94:1459–1464

    Article  PubMed  CAS  Google Scholar 

  • Geleoc GS, Lennan GW, Richardson GP, Kros CJ (1997) A quantitative comparison of mechanoelectrical transduction in vestibular and auditory hair cells of neonatal mice. Proc Biol Sci 264:611–621

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand MS, Silva MG de, Klockars T, Rose E, Price M, Smith RJ, McGuirt WT, Christopoulos H, Petit C, Dahl HH (2004) Characterisation of DRASIC in the mouse inner ear. Hear Res 190:149–160

    Article  PubMed  CAS  Google Scholar 

  • Jahr H, Driel M van, Osch GJ van, Weinans H, Leeuwen JP van (2005) Identification of acid-sensing ion channels in bone. Biochem Biophys Res Commun 337:349–354

    Article  PubMed  CAS  Google Scholar 

  • Jayaraman S, Song Y, Verkman AS (2001) Airway surface liquid pH in well-differentiated airway epithelial cell cultures and mouse trachea. Am J Physiol Cell Physiol 281:C1504–C1511

    PubMed  CAS  Google Scholar 

  • Kawamata T, Ninomiya T, Toriyabe M, Yamamoto J, Niiyama Y, Omote K, Namiki A (2006) Immunohistochemical analysis of acid-sensing ion channel 2 expression in rat dorsal root ganglion and effects of axotomy. Neuroscience 143:175–187

    Article  PubMed  CAS  Google Scholar 

  • Kros CJ, Rusch A, Richardson GP (1992) Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea. Proc Biol Sci 249:185–193

    Article  PubMed  CAS  Google Scholar 

  • Lingueglia E (2007) Acid-sensing ion channels in sensory perception. J Biol Chem 282:17325–17329

    Article  PubMed  CAS  Google Scholar 

  • Lingueglia E, Weille JR de, Bassilana F, Heurteaux C, Sakai H, Waldmann R, Lazdunski M (1997) A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J Biol Chem 272:29778–29783

    Article  PubMed  CAS  Google Scholar 

  • Lumpkin EA, Marquis RE, Hudspeth AJ (1997) The selectivity of the hair cell’s mechanoelectrical-transduction channel promotes Ca2+ flux at low Ca2+ concentrations. Proc Natl Acad Sci USA 94:10997–11002

    Article  PubMed  CAS  Google Scholar 

  • Maas DH, Storey BT, Mastroianni L Jr (1977) Hydrogen ion and carbon dioxide content of the oviductal fluid of the rhesus monkey (Macaca mulatta). Fertil Steril 28:981–985

    PubMed  CAS  Google Scholar 

  • Mano I, Driscoll M (1999) DEG/ENaC channels: a touchy superfamily that watches its salt. Bioessays 21:568–578

    Article  PubMed  CAS  Google Scholar 

  • Price MP, Snyder PM, Welsh MJ (1996) Cloning and expression of a novel human brain Na+ channel. J Biol Chem 271:7879–7882

    Article  PubMed  CAS  Google Scholar 

  • Price MP, Lewin GR, McIlwrath SL, Cheng C, Xie J, Heppenstall PA, Stucky CL, Mannsfeldt AG, Brennan TJ, Drummond HA, Qiao J, Benson CJ, Tarr DE, Hrstka RF, Yang B, Williamson RA, Welsh MJ (2000) The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407:1007–1011

    Article  PubMed  CAS  Google Scholar 

  • Renard S, Lingueglia E, Voilley N, Lazdunski M, Barbry P (1994) Biochemical analysis of the membrane topology of the amiloride-sensitive Na+ channel. J Biol Chem 269:12981–12986

    PubMed  CAS  Google Scholar 

  • Ricci AJ, Fettiplace R (1998) Calcium permeation of the turtle hair cell mechanotransducer channel and its relation to the composition of endolymph. J Physiol (Lond) 506:159–173

    Article  CAS  Google Scholar 

  • Roza C, Puel JL, Kress M, Baron A, Diochot S, Lazdunski M, Waldmann R (2004) Knockout of the ASIC2 channel in mice does not impair cutaneous mechanosensation, visceral mechanonociception and hearing. J Physiol Lond) 558:659–669

    Article  CAS  Google Scholar 

  • Salt AN (2001) Dynamics of the inner ear fluid. In: Jahn AFP, Santos-Sacchi J (eds) Physiology of the ear. Singular, New York, pp 333–355

    Google Scholar 

  • Strassmaier M, Gillespie PG (2002) The hair cell’s transduction channel. Curr Opin Neurobiol 12:380–386

    Article  PubMed  CAS  Google Scholar 

  • Ugawa S, Minami Y, Guo W, Saishin Y, Takatsuji K, Yamamoto T, Tohyama M, Shimada S (1998) Receptor that leaves a sour taste in the mouth. Nature 395:555–556

    Article  PubMed  CAS  Google Scholar 

  • Ugawa S, Inagaki A, Yamamura H, Ueda T, Ishida Y, Kajita K, Shimizu H, Shimada S (2006) Acid-sensing ion channel-1b in the stereocilia of mammalian cochlear hair cells. Neuroreport 17:1235–1239

    Article  PubMed  CAS  Google Scholar 

  • Waldmann R, Champigny G, Voilley N, Lauritzen I, Lazdunski M (1996) The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhabditis elegans. J Biol Chem 271:10433–10436

    Article  PubMed  CAS  Google Scholar 

  • Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M (1997) A proton-gated cation channel involved in acid-sensing. Nature 386:173–177

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms. E. Suzuki (Sapporo Medical University) for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Kikuchi.

Additional information

This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists (B), 20700429, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kikuchi, S., Ninomiya, T., Kawamata, T. et al. Expression of ASIC2 in ciliated cells and stereociliated cells. Cell Tissue Res 333, 217–224 (2008). https://doi.org/10.1007/s00441-008-0635-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-008-0635-3

Keywords

Navigation