Skip to main content
Log in

Activity-based anorexia has differential effects on apical dendritic branching in dorsal and ventral hippocampal CA1

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

An Erratum to this article was published on 04 January 2016

Abstract

Anorexia nervosa (AN) is an eating disorder to which adolescent females are particularly vulnerable. Like AN, activity-based anorexia (ABA), a rodent model of AN, results in elevation of stress hormones and has genetic links to anxiety disorders. The hippocampus plays a key role in the regulation of anxiety and responds with structural changes to hormones and stress, suggesting that it may play a role in AN. The hippocampus of ABA animals exhibits increased brain-derived neurotrophic factor and increased GABA receptor expression, but the structural effects of ABA have not been studied. We used Golgi staining of neurons to determine whether ABA in female rats during adolescence results in structural changes to the apical dendrites in hippocampal CA1 and contrasted to the effects of food restriction (FR) and exercise (EX), the environmental factors used to induce ABA. In the dorsal hippocampus, which preferentially mediates spatial learning and cognition, cells of ABA animals had less total dendritic length and fewer dendritic branches in stratum radiatum (SR) than in control (CON). In the ventral hippocampus, which preferentially mediates anxiety, ABA evoked more branching in SR than CON. In both dorsal and ventral regions, the main effect of exercise was localized to the SR while the main effect of food restriction occurred in the stratum lacunosum-moleculare. Taken together with data on spine density, these results indicate that ABA elicits pathway-specific changes in the hippocampus that may underlie the increased anxiety and reduced behavioral flexibility observed in ABA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aigner M, Treasure J, Kaye W, Kasper S (2011) World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the pharmacological treatment of eating disorders. World J Biol Psychiatry 12(6):400–443

    Article  PubMed  Google Scholar 

  • Amaral D, Lavenex P (2007) Hippocampal anatomy. In: Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (eds) The hippocampus book. Oxford University Press, USA

    Google Scholar 

  • American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders (4th edn., text rev.). American Psychiatric Association, Washington

  • Andrade JP, Mesquita R, Assunção M, Pereira PA (2006) Effects of food restriction on synthesis and expression of brain-derived neurotrophic factor and tyrosine kinase B in dentate gyrus granule cells of adult rats. Neurosci Lett 399(1):135–140

    Article  PubMed  CAS  Google Scholar 

  • Antonini A, Fagiolini M, Stryker MP (1999) Anatomical correlates of functional plasticity in mouse visual cortex. J Neurosci 19(11):4388–4406

    PubMed  CAS  PubMed Central  Google Scholar 

  • Aoki C, Sabaliauskas N, Chowdhury T, Min JY, Colacino AR, Laurino K, Barbarich-Marsteller NC (2012) Adolescent female rats exhibiting activity-based anorexia express elevated levels of GABAA receptor α4 and δ subunits at the plasma membrane of hippocampal CA1 spines. Synapse 66(5):391–407

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bannerman DM, Deacon RMJ, Offen S, Friswell J, Grubb M, Rawlins JNP (2002) Double dissociation of function within the hippocampus: spatial memory and hyponeophagia. Behav Neurosci 116(5):884

    Article  PubMed  CAS  Google Scholar 

  • Barbarich-Marsteller NC (2013a) Activity-based anorexia in the rat. In: Avena NM (ed) Animal models of eating disorders. Humana Press, New York, pp 281–290

    Chapter  Google Scholar 

  • Barbarich-Marsteller NC, Fornal CA, Takase LF, Bocarsly ME, Arner C, Walsh BT, Hoebel BG, Jacobs BL (2013b) Activity-based anorexia is associated with reduced hippocampal cell proliferation in adolescent female rats. Behav Brain Res 236(1):251–257

    Article  PubMed  Google Scholar 

  • Barbarich-Marsteller NC, Laurino K, Colacino AR (2012) Pharmacological treatments for anorexia nervosa. In: Barbarich-Marsteller NC (ed) Anorexia nervosa: symptoms, treatment, and neurobiology. Nova Science Publishers, Inc., New York, pp 97–117

    Google Scholar 

  • Berchtold NC, Castello N, Cotman CW (2010) Exercise and time-dependent benefits to learning and memory. Neuroscience 167(3):588–597

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Buchanan CM, Eccles JS, Becker JB (1992) Are adolescents the victims of raging hormones? Evidence for activational effects of hormones on moods and behavior at adolescence. Psychol Bull 111(1):62

    Article  PubMed  CAS  Google Scholar 

  • Burden VR, White BD, Dean RG, Martin RJ (1993) Activity of the hypothalamic–pituitary–adrenal axis is elevated in rats with activity-based anorexia. J Nutr 123(7):1217

    PubMed  CAS  Google Scholar 

  • Casey BJ, Tottenham N, Liston C, Durston S (2005) Imaging the developing brain: what have we learned about cognitive development? Trends Cognit Sci 9(3):104–110

    Article  CAS  Google Scholar 

  • Çavdar S, Onat FY, Çakmak YÖ, Yananli HR, Gülçebi M, Aker R (2008) The pathways connecting the hippocampal formation, the thalamic reuniens nucleus and the thalamic reticular nucleus in the rat. J Anat 212(3):249–256

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang EH, Savage MJ, Flood DG, Thomas JM, Levy RB, Mahadomrongkul V, Shirao T, Aoki C, Huerta PT (2006) AMPA receptor downscaling at the onset of Alzheimer’s disease pathology in double knockin mice. Proc Natl Acad Sci USA 103(9):3410–3415

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davis C, Katzman DK, Kirsh C (1999) Compulsive physical activity in adolescents with anorexia nervosa: a psychobehavioral spiral of pathology. J Nerv Ment Dis 187(6):336–342

    Article  PubMed  CAS  Google Scholar 

  • Engin E, Treit D (2008) Dissociation of the anxiolytic-like effects of Avpr1a and Avpr1b receptor antagonists in the dorsal and ventral hippocampus. Neuropeptides 42(4):411–421

    Article  PubMed  CAS  Google Scholar 

  • Epling WF, Pierce WD (eds) (1996) Activity anorexia: theory, research, and treatment. Lawrence Erlbaum, London

    Google Scholar 

  • Fagiolini M, Pizzorusso T, Berardi N, Domenici L, Maffei L (1994) Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Res 34(6):709–720

    Article  PubMed  CAS  Google Scholar 

  • Ferguson CP, La Via MC, Crossan PJ, Kaye WH (1999) Are serotonin selective reuptake inhibitors effective in underweight anorexia nervosa? Int J Eat Disord 25(1):11–17

    Article  PubMed  CAS  Google Scholar 

  • Gelegen C, Collier DA, Campbell IC, Oppelaar H, van den Heuvel J, Adan RA, Kas MJ (2007) Difference in susceptibility to activity-based anorexia in two inbred strains of mice. Eur Neuropsychopharmacol 17(3):199–205

    Article  PubMed  CAS  Google Scholar 

  • Gelegen C, Van Den Heuvel J, Collier DA, Campbell IC, Oppelaar H, Hessel E, Kas MJH (2008) Dopaminergic and brain-derived neurotrophic factor signalling in inbred mice exposed to a restricted feeding schedule. Genes Brain Behav 7(5):552–559

    Article  PubMed  CAS  Google Scholar 

  • Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF 3rd, Herman DH, Clasen LS, Toga AW, Rapoport JL, Thompson PM (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc National Acad Sci USA 101(21):8174–8179

    Article  CAS  Google Scholar 

  • Gómez-Pinilla F, Dao L, So V (1997) Physical exercise induces FGF-2 and its mRNA in the hippocampus. Brain Res 764(1):1–8

    Article  PubMed  Google Scholar 

  • Gutiérrez E, Baysari MT, Carrera O, Whitford TJ, Boakes RA (2006) High ambient temperature reduces rate of body-weight loss produced by wheel running. Q J Exp Psychol 59(7):1196–1211

    Article  Google Scholar 

  • Gutiérrez E, Churruca I, Zárate J, Carrera O, Portillo MP, Cerrato M, Vázquez R, Echevarría E (2009) High ambient temperature reverses hypothalamic MC4 receptor overexpression in an animal model of anorexia nervosa. Psychoneuroendocrinology 34(3):420–429

    Article  PubMed  Google Scholar 

  • Hall JF, Hanford PV (1954) Activity as a function of a restricted feeding schedule. J Comp Physiol Psychol 47(5):362

    Article  PubMed  CAS  Google Scholar 

  • Hay PJ, Claudino AM (2012) Clinical psychopharmacology of eating disorders: a research update. Int J Neuro-Psychopharmacol 15(2):209

    CAS  Google Scholar 

  • Hayward C, Sanborn K (2002) Puberty and the emergence of gender differences in psychopathology. J Adolesc Health 30(4 Suppl):49–58

    Article  PubMed  Google Scholar 

  • Hebebrand J, Muller TD, Holtkamp K, Herpertz-Dahlmann B (2006) The role of leptin in anorexia nervosa: clinical implications. Mol Psychiatry 12(1):23–35

    Article  PubMed  Google Scholar 

  • Hensch TK, Stryker MP (2004) Columnar architecture sculpted by GABA circuits in developing cat visual cortex. Sci Signal 303(5664):1678

    CAS  Google Scholar 

  • Hodes GE, Shors TJ (2005) Distinctive stress effects on learning during puberty. Horm Behav 48(2):163–171

    Article  PubMed  PubMed Central  Google Scholar 

  • Huttenlocher PR (1990) Morphometric study of human cerebral cortex development. Neuropsychologia 28(6):517–527

    Article  PubMed  CAS  Google Scholar 

  • Kaye W (2009) Eating disorders: hope despite mortal risk. Am J Psychiatry 166(12):1309–1311

    Article  PubMed  Google Scholar 

  • Kaye W, Gendall K, Strober M (1998) Serotonin neuronal function and selective serotonin reuptake inhibitor treatment in anorexia and bulimia nervosa. Biol Psychiatry 44(9):825–838

    Article  PubMed  CAS  Google Scholar 

  • Kaye WH, Fudge JL, Paulus M (2009) New insights into symptoms and neurocircuit function of anorexia nervosa. Nat Rev Neurosci 10(8):573–584

    Article  PubMed  CAS  Google Scholar 

  • Killackey HP, Leshin S (1995) Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex by age and experience. Nature 375:25

    Article  Google Scholar 

  • Kinzig KP, Hargrave SL (2010) Adolescent activity-based anorexia increases anxiety-like behavior in adulthood. Physiol Behav 101(2):269–276

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lee J, Duan W, Mattson MP (2002) Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem 82(6):1367–1375

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS (1999) Stress and hippocampal plasticity. Annu Rev Neurosci 22(1):105–122

    Article  PubMed  CAS  Google Scholar 

  • McHugh SB, Fillenz M, Lowry JP, Rawlins JNP, Bannerman DM (2011) Brain tissue oxygen amperometry in behaving rats demonstrates functional dissociation of dorsal and ventral hippocampus during spatial processing and anxiety. Eur J Neurosci 33(2):322–337

    Article  PubMed  PubMed Central  Google Scholar 

  • McKittrick CR, Magariños AM, Blanchard DC, Blanchard RJ, McEwen BS, Sakai RR (2000) Chronic social stress reduces dendritic arbors in CA3 of hippocampus and decreases binding to serotonin transporter sites. Synapse 36(2):85–94

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin KJ, Wilson JO, Harman J, Wright RL, Wieczorek L, Gomez J, Korol DL, Conrad CD (2010) Chronic 17β-estradiol or cholesterol prevents stress-induced hippocampal CA3 dendritic retraction in ovariectomized female rats: possible correspondence between CA1 spine properties and spatial acquisition. Hippocampus 20(6):768–786

    PubMed  CAS  PubMed Central  Google Scholar 

  • Megias M, Emri ZS, Freund TF, Gulyas AI (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102(3):527

    Article  PubMed  CAS  Google Scholar 

  • Moser EI, Kropff E, Moser MB (2008) Place cells, grid cells, and the brain’s spatial representation system. Annu Rev Neurosci 31:69–89

    Article  PubMed  CAS  Google Scholar 

  • Neeper SA, Gómez-Pinilla F, Choi J, Cotman CW (1996) Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 726(1):49–56

    Article  PubMed  CAS  Google Scholar 

  • Nelson JF, Gosden RG, Felicio LS (1985) Effect of dietary restriction on estrous cyclicity and follicular reserves in aging C57BL/6J mice. Biol Reprod 32(3):515–522

    Article  PubMed  CAS  Google Scholar 

  • Pikkarainen M, Rönkkö S, Savander V, Insausti R, Pitkänen A (1998) Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. J Comp Neurol 403(2):229–260

    Article  Google Scholar 

  • Pothuizen HH, Zhang WN, Jongen-Rêlo AL, Feldon J, Yee BK (2004) Dissociation of function between the dorsal and the ventral hippocampus in spatial learning abilities of the rat: a within-subject, within-task comparison of reference and working spatial memory. Eur J Neurosci 19(3):705–712

    Article  PubMed  Google Scholar 

  • Riddle MC, McKenna MC, Yoon YJ, Pattwell SS, Santos PMG, Casey BJ, Glatt CE (2013) Caloric restriction enhances fear extinction learning in mice. Neuropsychopharmacology 38(6):930–937

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Routtenberg A, Kuznesof AW (1967) Self-starvation of rats living in activity wheels on a restricted feeding schedule. J Comp Physiol Psychol 64(3):414

    Article  PubMed  CAS  Google Scholar 

  • Silva-Gómez AB, Aguilar-Salgado Y, Reyes-Hernández DO, Flores G (2012) Dexamethasone induces different morphological changes in the dorsal and ventral hippocampus of rats. J Chem Neuroanat 47:71–78

    Article  PubMed  Google Scholar 

  • Stranahan AM, Khalil D, Gould E (2007) Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus 17(11):1017–1022

    Article  PubMed  PubMed Central  Google Scholar 

  • Stranahan AM, Lee K, Martin B, Maudsley S, Golden E, Cutler RG, Mattson MP (2009) Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus 19(10):951–961

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Su HS, Bentivoglio M (1990) Thalamic midline cell populations projecting to the nucleus accumbens, amygdala, and hippocampus in the rat. J Comp Neurol 297(4):582–593

    Article  PubMed  CAS  Google Scholar 

  • Valverde P (1967) Apical dendritic spines of the visual cortex and light deprivation in the mouse. Exp Brain Res 3(4):337–352

    Article  PubMed  CAS  Google Scholar 

  • Vaynman S, Ying Z, Gomez-Pinilla F (2004) Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 20(10):2580–2590

    Article  PubMed  Google Scholar 

  • Woolley CS, McEwen BS (1992) Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J Neurosci 12(7):2549–2554

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the following Grants: The Klarman Foundation Grant Program in Eating Disorders Research, National Institutes for Health Grants R21MH091445-01 to CA and NBM, R01NS066019-01A1 to CA, R01NS047557-07A1 to CA, NEI Core Grant EY13079 to CA, R25GM097634-01 to CA, UL1 TR000038 from the National Center for the Advancement of Translational Science (NCATS) to TGC. We thank Kevin Laurino and Anna Rita Colacino for their help with animal husbandry and behavioral data collection. We thank Nicole Sabaliauskas and Gauri Wable for providing valuable feedback on the analysis and interpretation of results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiye Aoki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chowdhury, T.G., Barbarich-Marsteller, N.C., Chan, T.E. et al. Activity-based anorexia has differential effects on apical dendritic branching in dorsal and ventral hippocampal CA1. Brain Struct Funct 219, 1935–1945 (2014). https://doi.org/10.1007/s00429-013-0612-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0612-9

Keywords

Navigation