Skip to main content

Advertisement

Log in

Effect of hydrolysis-resistant FGF23-R179Q on dietary phosphate regulation of the renal type-II Na/Pi transporter

  • Ion Channels, Transporters
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Fibroblast growth factor 23 (FGF23), a phosphaturic factor, is involved in the regulation of renal inorganic phosphate (Pi) reabsorption. Proteolysis-resistant FGF23 mutants expressed in rodents reduce Pi uptake in both intestine and kidney, independent of parathyroid hormone action. In the present study, we investigated whether FGF23 affects dietary regulation of Na+-dependent Pi (Na/Pi) cotransport in the rat kidney using wild-type FGF23 and an R179Q mutant, which disrupts a consensus proteolytic cleavage motif. Rats injected with naked human FGF23 DNA (wild-type or R179Q mutant) expressed the human FGF23 transcript in the liver. In those animals, plasma calcium and parathyroid hormone levels were not affected by FGF23 (either wild-type or R179Q mutant). FGF23-R179Q did, however, significantly decrease plasma Pi and renal Na/Pi cotransport activity and also the level of type-IIc Na/Pi cotransporter protein in brush-border membrane vesicles (BBMVs) from normal rat kidney. Western blot and immunohistochemical analyses in rats fed a low-Pi diet showed the levels of types-IIa and -IIc Na/Pi cotransporters to be markedly increased. After injection of FGF23-R179Q DNA into the rats fed a low-Pi diet, the levels of the types-IIa and -IIc transporter proteins were decreased. The FGF23 mutant thus blunts the signalling of Pi deprivation to the renal type-II Na/Pi cotransporter, suggesting that the FGF23 pathway could be involved in the signalling of dietary Pi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1. a
Fig. 2a–c.
Fig. 3a, b.
Fig. 4a, b.
Fig. 5a–c.
Fig. 6a–h.

Similar content being viewed by others

References

  1. Cheng L, Dersch C, Kraus E, Spector D, Sacktor B (1984) Renal adaptation to phosphate load in the acutely thyroparathyroidectomized rat: rapid alteration in brush border membrane phosphate transport. Am J Physiol 246:F488–F494

    CAS  PubMed  Google Scholar 

  2. Miyamoto K, Ito M, Segawa H, Kuwahata M (2000) Secondary hyperparathyroidism and phosphate sensing in parathyroid glands. J Med Invest 47:118–22

    CAS  PubMed  Google Scholar 

  3. Murer H, Hernando N, Forster I, Biber J (2000) Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev 80:1373–1409

    CAS  PubMed  Google Scholar 

  4. Kruse K, Woelfel D, Storm TM (2001) Loss of renal phosphate wasting in a child with autosomal dominant hypophosphatemic rickets caused by a FGF23 mutation. Horm Res 55:305–308

    Article  CAS  PubMed  Google Scholar 

  5. Tenenhouse HS, Sabbagh Y (2002) Novel phosphate-regulating genes in the pathogenesis of renal phosphate wasting disorders. Pflugers Arch 444:317–326

    PubMed  Google Scholar 

  6. The ADHR Consortium (2000) Autosomal dominant hypophosphatemic rickets is associated with mutations in FGF23. Nat Genet 26:345–348

    PubMed  Google Scholar 

  7. Shimada T, Mizutani S, Muto T, Yoneda T, Hino R, Takeda S, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T (2001) Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA 98:6500–6505

    CAS  PubMed  Google Scholar 

  8. Shimada T, Muto T, Urakawa I, Yoneya T, Yamazaki Y, Okawa K, Takeushi Y, Fujita T, Fukumoto S, Yamashita T (2002) Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology 143:3179–3182

    CAS  PubMed  Google Scholar 

  9. White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ (2001) Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int 60:2079–2086

    CAS  PubMed  Google Scholar 

  10. White KE, Jonsson KB, Carn G, Hampson G, Spector TD, Mannstadt M, Lorenz-Depiereux B, Miyauchi A, Yang IM, Ljunggren O, Meitinger T, Strom TM, Juppner H, Econs MJ (2001) The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting. J Clin Endocrinol Metab 86:497–500

    CAS  PubMed  Google Scholar 

  11. Saito H, Kusano K, Kinosaki M, Ito H, Hirata M, Miyamoto K, Fukushima N (2003) Suppression of both Na+-dependent phosphate co-transport activity and 1α,25-hydroxyvitamin D3 production is induced by the human fibroblast growth factor-23 mutant. J Biol Chem 278:2206–2211

    Article  CAS  PubMed  Google Scholar 

  12. Hernando N, Forster I, Biber J, Murer H (2000) Molecular characteristics of phosphate transporters and their regulation. Exp Nephrol 8:366–375

    Article  CAS  PubMed  Google Scholar 

  13. Segawa H, Kaneko I, Takahashi A, Ito M, Kuwahata M, Ohkido I, Tatsumi S, Miyamoto K (2002) Growth-related renal type II Na/Pi cotransporter. J Biol Chem 277:19665–19672

    Article  CAS  PubMed  Google Scholar 

  14. Ohkido I, Segawa H, Yanagida R, Nakamura M, Miyamoto K (2003) Cloning, gene structure, and dietary regulation of the type IIc Na/Pi cotransporter in mouse kidney. Pflugers Arch 446:106–115

    Google Scholar 

  15. Custer M, Lotscher M, Biber J, Murer H, Kaissling B (1994) Expression of Na-Pi cotransport in rat kidney: localization by RT-PCR and immunohistochemistry. Am J Physiol 266:F767–F774

    CAS  PubMed  Google Scholar 

  16. Feild JA, Zhang L, Brun KA, Brooks DP, Edwards RM (1999) Cloning and functional characterization of a sodium-dependent phosphate transporter expressed in human lung and small intestine. Biochem Biophys Res Commun 258:578–582

    PubMed  Google Scholar 

  17. Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J (1998) Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci USA 95:14564–14569

    CAS  PubMed  Google Scholar 

  18. Katai K, Segawa H, Haga H, Morita K, Arai H, Tatsumi S, Taketani Y, Miyamoto K, Hisano S, Fukui Y, Takeda E (1997) Acute regulation by dietary phosphate of the sodium-dependent phosphate transporter (NaPi-2) in rat kidney. J Biochem 121:50–55

    CAS  PubMed  Google Scholar 

  19. Taketani Y, Segawa H, Chikamori M, Morita K, Tanaka K, Kido S, Yamamoto H, Iemori Y, Tatsumi S, Tsugawa N, Okano T, Kobayashi T, Miyamoto K, Takeda E (1998) Regulation of type II renal Na+-dependent inorganic phosphate transporters by 1,25-dihydroxyvitamin D3. Identification of a vitamin D-responsive element in the human NaPi-3 gene. J Biol Chem 273:14575–14581

    CAS  PubMed  Google Scholar 

  20. Tanaka H, Miyamoto KI, Morita K, Haga H, Segawa H, Shiraga T, Fujioka A, Kouda T, Taketani Y, Hisano S, Fukui Y, Kitagawa K, Takeda E (1998) Regulation of the PepT1 peptide transporter in the rat small intestine in response to 5-fluorouracil-induced injury. Gastroenterology 114:714–723

    CAS  PubMed  Google Scholar 

  21. Takahashi F, Morita K, Katai K, Segawa H, Fujioka A, Kouda T, Tatsumi S, Nii T, Taketani Y, Haga H, Hisano S, Fukui Y, Miyamoto K, Takeda E (1998) Effects of dietary Pi on the renal Na+-dependent Pi transporter NaPi-2 in thyroparathyroidectomized rats. Biochem J 333:175–181

    CAS  PubMed  Google Scholar 

  22. Yamashita T, Hasegawa H, Yamazaki Y, Kawata T, Urakawa I, Shimada T, Takeuchi Y, Fujita T, Fukumoto S, Nagano N (2002) Involvement of FGF-23 in abnormal vitamin D and mineral metabolism associated with renal insufficiency (abstract). J Am Soc Nephrol 13:284A

    Google Scholar 

  23. Yamashita T, Konishi M, Miyake A, Inui K, Itho N (2002) Fibroblast growth factor (FGF)-23 inhibits renal phosphate reabsorption by activation of the mitogen-activated protein kinase pathway. J Biol Chem 277:3686–3697

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant 11557202 (K.M.) from the Ministry of Education, Science, Sports and Culture of Japan. We thank Setsuko Yamanaka and Maki Kinoyama for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Miyamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segawa, H., Kawakami, E., Kaneko, I. et al. Effect of hydrolysis-resistant FGF23-R179Q on dietary phosphate regulation of the renal type-II Na/Pi transporter. Pflugers Arch - Eur J Physiol 446, 585–592 (2003). https://doi.org/10.1007/s00424-003-1084-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1084-1

Keywords

Navigation