Skip to main content
Log in

The influence of alignment on the musculo-skeletal loading conditions at the knee

  • Musculoskeletal Soft Tissue Conditioning
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Background and aim

High tibial osteotomies attempt to recreate physiologically normal joint loading. Previous studies have discussed the influence of mal-alignment on the distribution of static loads to the medial and lateral compartments of the knee. The aim of this study was to determine the influence of mal-alignment on the tibio-femoral loading conditions during dynamic activities.

Material and methods

Using a musculo-skeletal model of the lower limb, which had been previously validated with in vivo data, in this study we modified the alignment of the knee in four patients, from a normal position to the extremes of 8° valgus and 10° varus mal-alignment. The resulting tibio-femoral joint contact forces were examined while patients were walking and stair climbing.

Results

Varying the mal-alignment resulted in a highly individual response in joint loads. Deviations from the normal alignment produced an increase in loading, with valgus generating a more rapid increase in loading than a varus deformity of the same amount. Varus deformities of 10° resulted in increases in peak contact force from an average of 3.3-times bodyweight (BW) up to a peak of 7.4 BW (+45% to +114%) while patients were walking, whilst increases of 15% up to 35% were determined for stair climbing. Increases of up to 140% were calculated at 8° valgus during walking and up to 53% for stair climbing.

Conclusion

This study demonstrated a clear dependence of the individual joint loads on axial knee alignment. Based on the sensitivity of joint loading to valgus mal-alignment, more than 3° of over-correction of a varus deformity to valgus should be carefully reconsidered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a, b.
Fig. 3a, b.
Fig. 4a, b.

Similar content being viewed by others

References

  1. An KN, Kwak BM, Chao EY, et al (1984) Determination of muscle and joint forces: a new technique to solve the indeterminate problem. J Biomech Eng 106:364–367

    CAS  PubMed  Google Scholar 

  2. Andrews JG (1974) Biomechanical analysis of human motion. Kinesiology 4:32–42

    Google Scholar 

  3. Andriacchi TP (1994) Dynamics of knee malalignment. Orthop Clin North Am 25:395–403

    CAS  PubMed  Google Scholar 

  4. Baliunas AJ, Hurwitz DE, Ryals AB, et al (2002) Increased knee joint loads during walking are present in subjects with knee osteoarthritis. Osteoarthritis Cartilage 10:573–579

    Article  CAS  PubMed  Google Scholar 

  5. Bergmann G (ed) (2001) HIP98—loading of the hip joint. Compact Disc, Free University of Berlin, ISBN 3980784800

  6. Bergmann G, Graichen F, Siraky J, et al (1988) Multichannel strain gauge telemetry for orthopaedic implants. J Biomech 21:169–176

    CAS  PubMed  Google Scholar 

  7. Bergmann G, Graichen F, Rohlmann A (1993) Hip joint loading during walking and running, measured in two patients. J Biomech 26:969-990

    CAS  PubMed  Google Scholar 

  8. Bergmann G, Deuretzbacher G, Heller M, et al (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34:859–871

    Article  CAS  PubMed  Google Scholar 

  9. Bowen RE, Dorey FJ, Moseley CF (2002) Relative tibial and femoral varus as a predictor of progression of varus deformities of the lower limbs in young children. J Pediatr Orthop 22:105–111

    Article  PubMed  Google Scholar 

  10. Brand RA, Crowninshield RD, Wittstock CE, et al (1982) A model of lower extremity muscular anatomy. J Biomech Eng 104:304–310

    CAS  PubMed  Google Scholar 

  11. Brand RA, Pedersen DR, Friederich JA (1986) The sensitivity of muscle force predictions to changes in physiologic cross-sectional area. J Biomech 19:589–596

    CAS  PubMed  Google Scholar 

  12. Challis JH (1997) Producing physiologically realistic individual muscle force estimations by imposing constraints when using optimization techniques. Med Eng Phys 19:253–261

    Article  CAS  PubMed  Google Scholar 

  13. Coventry MB (1985) Upper tibial osteotomy for osteoarthritis. J Bone Joint Surg Am 67:1136–1140

    CAS  PubMed  Google Scholar 

  14. Deuretzbacher G, Rehder U (1995) Ein CAE-basierter Zugang zur dynamischen Ganzkörpermodellierung—Die Kräfte in der lumbalen Wirbelsäule beim asymmetrischen Heben. Biomed Tech 40:93–98

    CAS  Google Scholar 

  15. Duda GN, Brand D, Freitag S, et al (1996) Variability of femoral muscle attachments. J Biomech 29:1185–1190

    Article  CAS  PubMed  Google Scholar 

  16. Dürselen L, Claes L, Kiefer H (1995) The influence of muscle forces and external loads on cruciate ligament strain. Am J Sports Med 23:129–136

    PubMed  Google Scholar 

  17. Geiger B (ed) (1993) Three dimensional modeling of human organs and its application to diagnosis and surgical planning. Technical report 2105

  18. Gritzka TL, Fry LR, Cheesman RL, et al (1973) Deterioration of articular cartilage caused by continuous compression in a moving rabbit joint. A light and electron microscopic study. J Bone Joint Surg Am 55:1698–1720

    CAS  PubMed  Google Scholar 

  19. Harrington IJ (1983) Static and dynamic loading patterns in knee joints with deformities. J Bone Joint Surg Am 65:247–259

    CAS  PubMed  Google Scholar 

  20. Heller MO, Bergmann G, Deuretzbacher G, et al (2001) Musculo-skeletal loading conditions at the hip during walking and stair climbing. J Biomech 34:883–893

    Article  CAS  PubMed  Google Scholar 

  21. Hsu RW, Himeno S, Coventry MB, et al (1990) Normal axial alignment of the lower extremity and load-bearing distribution at the knee. Clin Orthop 255:215–227

    Google Scholar 

  22. Insall JN, Joseph DM, Msika C (1984) High tibial osteotomy for varus gonarthrosis. A long-term follow-up study. J Bone Joint Surg Am 66:1040–1048

    CAS  PubMed  Google Scholar 

  23. Johnson F, Leitl S, Waugh W (1980) The distribution of load across the knee. A comparison of static and dynamic measurements. J Bone Joint Surg Br 62:346–349

    CAS  PubMed  Google Scholar 

  24. Kellis E (2001) Tibiofemoral joint forces during maximal isokinetic eccentric and concentric efforts of the knee flexors. Clin Biomech 16:229–236

    Article  CAS  Google Scholar 

  25. Kettelkamp DB, Chao EY (1972) A method for quantitative analysis of medial and lateral compression forces at the knee during standing. Clin Orthop 83:202–213

    CAS  PubMed  Google Scholar 

  26. Kiefer H, Schmerwitz U, Langemeyer D (2002) Kinematische Computernavigation für den Kniegelenksersatz. In: Imhoff AB (ed) Computer assisted orthopedic surgery. Steinkopff, Darmstadt, pp 99-104

  27. Leutloff D, Tobian F, Perka C (2001) High tibial osteotomy for valgus and varus deformities of the knee. Int Orthop 25:93–96

    Article  CAS  PubMed  Google Scholar 

  28. Marti RK, Verhagen RA, Kerkhoffs GM, et al (2001) Proximal tibial varus osteotomy. Indications, technique, and five to twenty-one-year results. J Bone Joint Surg Am 83-A:164–170

    Google Scholar 

  29. McKellop HA, Sigholm G, Redfern FC, et al (1991) The effect of simulated fracture-angulations of the tibia on cartilage pressures in the knee joint. J Bone Joint Surg Am 73:1382–1391

    CAS  PubMed  Google Scholar 

  30. Mielke RK, Clemens U, Jens JH, et al (2001) Navigation in knee endoprosthesis implantation—preliminary experiences and prospective comparative study with conventional implantation technique. Z Orthop Ihre Grenzgeb 139:109–116

    Article  CAS  PubMed  Google Scholar 

  31. Morrey BF (1989) Upper tibial osteotomy for secondary osteoarthritis of the knee. J Bone Joint Surg Br 71:554–559

    CAS  PubMed  Google Scholar 

  32. Morrison JB (1970) The mechanics of the knee joint in relation to normal walking. J Biomech 3:51–61

    CAS  PubMed  Google Scholar 

  33. Naudie D, Bourne RB, Rorabeck CH, et al (1999) The Install Award. Survivorship of the high tibial valgus osteotomy. A 10- to 22-year followup study. Clin Orthop 367:18–27

    Google Scholar 

  34. Paley D, Pfeil J (2000) Principles of deformity correction around the knee. Orthopade 29:18–38

    Article  CAS  PubMed  Google Scholar 

  35. Prodromos CC, Andriacchi TP, Galante JO (1985) A relationship between gait and clinical changes following high tibial osteotomy. J Bone Joint Surg Am 67:1188–1194

    CAS  PubMed  Google Scholar 

  36. Reimann I (1973) Experimental osteoarthritis of the knee in rabbits induced by alteration of the load-bearing. Acta Orthop Scand 44:496–504

    CAS  PubMed  Google Scholar 

  37. Sharma L, Lou C, Cahue S, et al (2000) The mechanism of the effect of obesity in knee osteoarthritis: the mediating role of malalignment. Arthritis Rheum 43:568–575

    Article  CAS  PubMed  Google Scholar 

  38. Spitzer V, Ackerman MJ, Scherzinger AL, et al (1996) The visible human male: a technical report. J Am Med Inform Assoc 3:118–130

    CAS  PubMed  Google Scholar 

  39. Wang JW, Kuo KN, Andriacchi TP, et al (1990) The influence of walking mechanics and time on the results of proximal tibial osteotomy. J Bone Joint Surg Am 72:905–909

    CAS  PubMed  Google Scholar 

  40. Weidenhielm L, Wykman A, Lundberg A, et al (1993) Knee motion after tibial osteotomy for arthrosis. Kinematic analysis of 7 patients. Acta Orthop Scand 64:317–319

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the German Research Society DFG KFO 102/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus O. Heller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heller, M.O., Taylor, W.R., Perka, C. et al. The influence of alignment on the musculo-skeletal loading conditions at the knee. Langenbecks Arch Surg 388, 291–297 (2003). https://doi.org/10.1007/s00423-003-0406-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-003-0406-2

Keywords

Navigation