Skip to main content
Log in

Influence of sildenafil on lung diffusion during exposure to acute hypoxia at rest and during exercise in healthy humans

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

We sought to determine the influence of sildenafil on the diffusing capacity of the lungs for carbon monoxide (DLCO) and the components of DLCO (pulmonary capillary blood volume V c, and alveolar–capillary membrane conductance D M) at rest and following exercise with normoxia and hypoxia. This double-blind placebo-controlled, cross-over study included 14 healthy subjects (age = 33 ± 11 years, ht = 181 ± 8 cm, weight = 85 ± 14 kg, BMI = 26 ± 3 kg/m2, peak normoxic VO2 = 36 ± 6 ml/kg, mean ± SD). Subjects were randomized to placebo or 100 mg sildenafil 1 h prior to entering a hypoxic tent with an FiO2 of 12.5% for 90 min. DLCO, V c, and D M were assessed at rest, every 3 min during exercise, at peak exercise, and 10 and 30 min post exercise. Sildenafil attenuated the elevation in PAP at rest and during recovery with exposure to hypoxia, but pulmonary arterial pressure immediately post exercise was not different between sildenafil and placebo. Systemic O2 saturation and VO2peak did not differ between the two conditions. DLCO was not different between groups at any time point. V C was higher with exercise in the placebo group, and the difference in D M between sildenafil and placebo was significant only when corrected for changes in V c (D M/V c = 0.57 ± 0.29 vs. 0.41 ± 0.16, P = 0.04). These results suggest no effect of sildenafil on DLCO, but an improvement in D M when corrected for changes in V c during short-term hypoxic exposure with exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aldashev AA, Kojonazarov BK, Amatov TA, Sooronbaev TM, Mirrakhimov MM, Morrell NW, Wharton J, Wilkins MR (2005) Phosphodiesterase type 5 and high altitude pulmonary hypertension. Thorax 60:683–687

    Article  PubMed  CAS  Google Scholar 

  • Bartsch P, Mairbaurl H, Maggiorini M, Swenson ER (2005) Physiological aspects of high-altitude pulmonary edema. J Appl Physiol 98:1101–1110

    Article  PubMed  CAS  Google Scholar 

  • Bell C, Monahan KD, Donato AJ, Hunt BE, Seals DR, Beck KC (2003) Use of acetylene breathing to determine cardiac output in young and older adults. Med Sci Sports Exerc 35:58–64

    Article  PubMed  CAS  Google Scholar 

  • Bland RD, Demling RH, Selinger SL, Staub NC (1977) Effects of alveolar hypoxia on lung fluid and protein transport in unanesthetized sheep. Circ Res 40:269–274

    PubMed  CAS  Google Scholar 

  • Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381

    PubMed  CAS  Google Scholar 

  • Chang HJ, Chung JH, Choi BJ, Choi TY, Choi SY, Yoon MH, Hwang GS, Shin JH, Tahk SJ, Choi BI (2003) Endothelial dysfunction and alteration of nitric oxide/cyclic GMP pathway in patients with exercise-induced hypertension. Yonsei Med J 44:1014–1020

    PubMed  CAS  Google Scholar 

  • Cohen AH, Hanson K, Morris K, Fouty B, McMurty IF, Clarke W, Rodman DM (1996) Inhibition of cyclic 3′-5′-guanosine monophosphate-specific phosphodiesterase selectively vasodilates the pulmonary circulation in chronically hypoxic rats. J Clin Invest 97:172–179

    Article  PubMed  CAS  Google Scholar 

  • Faoro V, Lamotte M, Deboeck G, Pavelescu A, Huez S, Guenard H, Martinot JB, Naeije R (2007) Effects of sildenafil on exercise capacity in hypoxic normal subjects. High Alt Med Biol 8:155–163

    Article  PubMed  CAS  Google Scholar 

  • Galie N, Ghofrani HA, Torbicki A, Barst RJ, Rubin LJ, Badesch D, Fleming T, Parpia T, Burgess G, Branzi A, Grimminger F, Kurzyna M, Simonneau G (2005) Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med 353:2148–2157

    Article  PubMed  CAS  Google Scholar 

  • Gallagher CG, Huda W, Rigby M, Greenberg D, Younes M (1988) Lack of radiographic evidence of interstitial pulmonary edema after maximal exercise in normal subjects. Am Rev Respir Dis 137:474–476

    PubMed  CAS  Google Scholar 

  • Ghofrani HA, Reichenberger F, Kohstall MG, Mrosek EH, Seeger T, Olschewski H, Seeger W, Grimminger F (2004) Sildenafil increased exercise capacity during hypoxia at low altitudes and at Mount Everest base camp: a randomized, double-blind, placebo-controlled crossover trial. Ann Intern Med 141:169–177

    PubMed  CAS  Google Scholar 

  • Grover RF (1965) Pulmonary circulation in animals and man at high altitude. Ann N Y Acad Sci 127:632–639

    Article  PubMed  CAS  Google Scholar 

  • Guenette JA, Sporer BC, Macnutt MJ, Coxson HO, Sheel AW, Mayo JR, McKenzie DC (2007) Lung density is not altered following intense normobaric hypoxic interval training in competitive female cyclists. J Appl Physiol 103(3):875–882

    Article  PubMed  Google Scholar 

  • Hanel B, Clifford PS, Secher NH (1994) Restricted postexercise pulmonary diffusion capacity does not impair maximal transport for O2. J Appl Physiol 77:2408–2412

    PubMed  CAS  Google Scholar 

  • Hansen JE, Sue DY, Wasserman K (1984) Predicted values for clinical exercise testing. Am Rev Respir Dis 129:S49–S55

    PubMed  CAS  Google Scholar 

  • Hodges AN, Sheel AW, Mayo JR, McKenzie DC (2007) Human lung density is not altered following normoxic and hypoxic moderate-intensity exercise: implications for transient edema. J Appl Physiol 103:111–118

    Article  PubMed  Google Scholar 

  • Jackson G, Benjamin N, Jackson N, Allen MJ (1999) Effects of sildenafil citrate on human hemodynamics. Am J Cardiol 83:13C–20C

    Article  PubMed  CAS  Google Scholar 

  • Johnson BD, Saupe KW, Dempsey JA (1992) Mechanical constraints on exercise hyperpnea in endurance athletes. J Appl Physiol 73:874–886

    PubMed  CAS  Google Scholar 

  • Johnson BD, Beck KC, Proctor DN, Miller J, Dietz NM, Joyner MJ (2000) Cardiac output during exercise by the open circuit acetylene washin method: comparison with direct Fick. J Appl Physiol 88:1650–1658

    Article  PubMed  CAS  Google Scholar 

  • Levine BD, Kubo K, Kobayashi T, Fukushima M, Shibamoto T, Ueda G (1988) Role of barometric pressure in pulmonary fluid balance and oxygen transport. J Appl Physiol 64:419–428

    Article  PubMed  CAS  Google Scholar 

  • MacNutt MJ, Guenette JA, Witt JD, Yuan R, Mayo JR, McKenzie DC (2007) Intense hypoxic cycle exercise does not alter lung density in competitive male cyclists. Eur J Appl Physiol 99:623–631

    Article  PubMed  CAS  Google Scholar 

  • Maeda S, Tanabe T, Otsuki T, Sugawara J, Iemitsu M, Miyauchi T, Kuno S, Ajisaka R, Matsuda M (2004) Moderate regular exercise increases basal production of nitric oxide in elderly women. Hypertens Res 27:947–953

    Article  PubMed  CAS  Google Scholar 

  • Michelakis E, Tymchak W, Lien D, Webster L, Hashimoto K, Archer S (2002) Oral sildenafil is an effective and specific pulmonary vasodilator in patients with pulmonary arterial hypertension: comparison with inhaled nitric oxide. Circulation 105:2398–2403

    Article  PubMed  CAS  Google Scholar 

  • Nagueh SF, Kopelen HA, Zoghbi WA (1996) Relation of mean right atrial pressure to echocardiographic and Doppler parameters of right atrial and right ventricular function. Circulation 93:1160–1169

    PubMed  CAS  Google Scholar 

  • Ommen SR, Nishimura RA, Hurrell DG, Klarich KW (2000) Assessment of right atrial pressure with 2-dimensional and Doppler echocardiography: a simultaneous catheterization and echocardiographic study. Mayo Clin Proc 75:24–29

    Article  PubMed  CAS  Google Scholar 

  • Proctor DN, Beck KC (1996) Delay time adjustments to minimize errors in breath-by-breath measurement of VO2 during exercise. J Appl Physiol 81:2495–2499

    PubMed  CAS  Google Scholar 

  • Ricart A, Maristany J, Fort N, Leal C, Pages T, Viscor G (2005) Effects of sildenafil on the human response to acute hypoxia and exercise. High Alt Med Biol 6:43–49

    Article  PubMed  CAS  Google Scholar 

  • Richalet JP, Gratadour P, Robach P, Pham I, Dechaux M, Joncquiert-Latarjet A, Mollard P, Brugniaux J, Cornolo J (2005) Sildenafil inhibits altitude-induced hypoxemia and pulmonary hypertension. Am J Respir Crit Care Med 171:275–281

    Article  PubMed  Google Scholar 

  • Sartori C, Allemann Y, Trueb L, Lepori M, Maggiorini M, Nicod P, Scherrer U (2000) Exaggerated pulmonary hypertension is not sufficient to trigger high-altitude pulmonary oedema in humans. Schweiz Med Wochenschr 130:385–389

    PubMed  CAS  Google Scholar 

  • Sebkhi A, Strange JW, Phillips SC, Wharton J, Wilkins MR (2003) Phosphodiesterase Type 5 as a target for the treatment of hypoxia-induced pulmonary hypertension. Circulation 107:3230–3235

    Article  PubMed  CAS  Google Scholar 

  • Snyder EM, Beck KC, Hulsebus ML, Breen JF, Hoffman EA, Johnson BD (2006) Short-term hypoxic exposure at rest and during exercise reduces lung water in healthy humans. J Appl Physiol 101:1623–1632

    Article  PubMed  Google Scholar 

  • Tamhane RM, Johnson RL Jr, Hsia CC (2001) Pulmonary membrane diffusing capacity and capillary blood volume measured during exercise from nitric oxide uptake. Chest 120:1850–1856

    Article  PubMed  CAS  Google Scholar 

  • Yock PG, Popp RL (1984) Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation 70:657–662

    PubMed  CAS  Google Scholar 

  • Zhao L, Mason NA, Morrell NW, Kojonazarov B, Sadykov A, Maripov A, Mirrakhimov MM, Aldashev A, Wilkins MR (2001) Sildenafil inhibits hypoxia-induced pulmonary hypertension. Circulation 104:424–428

    Article  PubMed  CAS  Google Scholar 

  • Zusman RM, Morales A, Glasser DB, Osterloh IH (1999) Overall cardiovascular profile of sildenafil citrate. Am J Cardiol 83:35C–44C

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant to Dr. Frantz from Pfizer, Inc., NIH Grant HL71478, and AHA Grant 56051Z. At the time the study was performed Dr. Snyder was supported by the Mayo Clinic Nephrology and Hypertension Training Grant (DK007013-31). We would like to thank Minelle Hulsebus and Kathy O’Malley for their help with data collection, as well as the efforts of the study participants. We would also like to thank the staff of the General Clinical Research Center (GCRC) for their assistance throughout this study. The Mayo Clinic GCRC is supported by US Public Health Service grant M01-RR00585.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric M. Snyder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snyder, E.M., Olson, T.P., Johnson, B.D. et al. Influence of sildenafil on lung diffusion during exposure to acute hypoxia at rest and during exercise in healthy humans. Eur J Appl Physiol 103, 421–430 (2008). https://doi.org/10.1007/s00421-008-0735-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0735-5

Keywords

Navigation