Skip to main content

Advertisement

Log in

The role of mitochondria in neurodegenerative diseases

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Mitochondria are implicated in several metabolic pathways including cell respiratory processes, apoptosis, and free radical production. Mitochondrial abnormalities have been documented in neurodegenerative diseases, including Alzheimer’s, Parkinson’s, and Huntington’s diseases, and amyotrophic lateral sclerosis. Several studies have demonstrated that mitochondrial impairment plays an important role in the pathogenesis of this group of disorders. In this review, we discuss the role of mitochondria in the main neurodegenerative diseases and review the updated knowledge in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Filosto M, Tonin P, Vattemi G, Spagnolo M, Rizzuto N, Tomelleri G (2002) Antioxidant agents have a different expression pattern in muscle fibers of patients with mitochondrial diseases. Acta Neuropathol 103:215–220

    Article  PubMed  CAS  Google Scholar 

  2. Karbowski M (2010) Mitochondria on guard: role of mitochondrial fusion and fission in the regulation of apoptosis. Adv Exp Med Biol 687:131–142

    Article  PubMed  CAS  Google Scholar 

  3. Wolvetang EJ, Johnson KL, Krauer K, Ralph SJ, Linnane AW (1994) Mitochondrial respiratory chain inhibitors induce apoptosis. FEBS Lett 339:40–44

    Article  PubMed  CAS  Google Scholar 

  4. Filosto M, Mancuso M (2007) Mitochondrial diseases: a nosological update. Acta Neurol Scand 115:211–221

    Article  PubMed  CAS  Google Scholar 

  5. DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348:2656–2668

    Article  PubMed  CAS  Google Scholar 

  6. Mancuso M, Filosto M, Choub A, Tentorio M, Broglio L, Padovani A et al (2007) Mitochondrial DNA-related disorders. Biosci Rep 27:31–37

    Article  PubMed  CAS  Google Scholar 

  7. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  PubMed  CAS  Google Scholar 

  8. Fernández-Checa JC, Fernández A, Morales A, Marí M, García-Ruiz C, Colell A (2010) Oxidative stress and altered mitochondrial function in neurodegenerative diseases: lessons from mouse models. CNS Neurol Disord Drug Targets 9:439–454

    PubMed  Google Scholar 

  9. Nikali K, Suomalainen A, Saharinen J, Kuokkanen M, Spelbrink JN, Lonnqvist T et al (2005) Infantile onset spinocerebellar ataxia is caused by recessive mutations in mitochondrial proteins Twinkle and Twinky. Hum Mol Genet 14:2981–2990

    Article  PubMed  CAS  Google Scholar 

  10. Luoma PT, Eerola J, Ahola S, Hakonen AH, Hellström O, Kivistö KT et al (2007) Mitochondrial DNA polymerase gamma variants in idiopathic sporadic Parkinson disease. Neurology 69:1152–1159

    Article  PubMed  CAS  Google Scholar 

  11. Orth M, Schapira AH (2001) Mitochondria and degenerative disorders. Am J Med Genet 106:27–36

    Article  PubMed  CAS  Google Scholar 

  12. Casari G, De Fusco M, Ciarmatori S, Zeviani M, Mora M, Fernandez P et al (1998) Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93:973–983

    Article  PubMed  CAS  Google Scholar 

  13. Jin H, May M, Tranebjaerg L, Kendall E, Fontan G, Jackson J et al (1996) A novel X-linked gene, DDP, shows mutations in families with deafness (DFN-1), dystonia, mental deficiency and blindness. Nat Genet 14:177–180

    Article  PubMed  CAS  Google Scholar 

  14. Allikmets R, Raskind WH, Hutchinson A, Schueck ND, Dean M, Koeller DM (1999) Mutation of a putative mitochondrial iron transporter gene (ABC7) in X-linked sideroblastic anemia and ataxia (XLSA/A). Hum Mol Genet 8:743–749

    Article  PubMed  CAS  Google Scholar 

  15. Koutnokova H, Campuzano V, Foury F, Dollè P, Cazzalini O, Koenig M (1997) Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin. Nat Genet 16:345–351

    Article  Google Scholar 

  16. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    PubMed  CAS  Google Scholar 

  17. Bekris LM, Yu CE, Bird TD, Tsuang DW (2010) Review article: genetics of Alzheimer disease. J Geriatr Psychiatry Neurol 23:213–227

    Article  PubMed  Google Scholar 

  18. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–344

    Article  PubMed  CAS  Google Scholar 

  19. Mungarro-Menchaca X, Ferrera P, Moran J, Arias C (2002) Beta-amyloid peptide induces ultrastructural changes in synaptosomes and potentiates mitochondrial dysfunction in the presence of ryanodine. J Neurosci Res 68:89–96

    Article  PubMed  CAS  Google Scholar 

  20. Hauptmann S, Keil U, Scherping I, Bonert A, Eckert A, Muller WE (2006) Mitochondrial dysfunction in sporadic and genetic Alzheimer’s disease. Exp Gerontol 41:668–673

    Article  PubMed  CAS  Google Scholar 

  21. Reddy PH, Beal MF (2008) Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 14:45–53

    Article  PubMed  CAS  Google Scholar 

  22. Sverdlovsk RH, Kish SJ (2002) Mitochondria in Alzheimer’s disease. Int Rev Neurobiol 53:341–385

    Article  Google Scholar 

  23. Valla J, Schneider L, Niedzielko T, Coon KD, Caselli R, Sabbagh MN et al (2006) Impaired platelet mitochondrial activity in Alzheimer’s disease and mild cognitive impairment. Mitochondrion 6:323–330

    Article  PubMed  CAS  Google Scholar 

  24. Caspersen C, Wang N, Yao J, Sosunov A, Chen X, Lustbader JW et al (2005) Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J 19:2040–2041

    PubMed  CAS  Google Scholar 

  25. Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, Meier F et al (2009) Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc Natl Acad Sci USA 106:20057–20062

    PubMed  CAS  Google Scholar 

  26. Gouras GK, Almeida CG, Takahashi RH (2005) Intraneuronal Abeta accumulation and origin of plaques in Alzheimer’s disease. Neurobiol Aging 26:1235–1244

    Article  PubMed  CAS  Google Scholar 

  27. Pereira C, Santos MS, Oliveira C (1998) Mitochondrial function impairment induced by amyloid beta-peptide on PC12 cells. Neuroreport 9:1749–1755

    Article  PubMed  CAS  Google Scholar 

  28. Canevari L, Clark JB, Bates TE (1999) beta-Amyloid fragment 25–35 selectively decreases complex IV activity in isolated mitochondria. FEBS Lett 457:131–134

    Article  PubMed  CAS  Google Scholar 

  29. Crouch PJ, Blake R, Duce JA, Ciccotosto GD, Li QX, Barnham KJ et al (2005) Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-beta 1–42. J Neurosci 25:672–679

    Article  PubMed  CAS  Google Scholar 

  30. Aliev G, Seyidova D, Lamb BT, Obrenovich ME, Siedlak SL, Vinters HV et al (2003) Mitochondria and vascular lesions as a central target for the development of Alzheimer’s disease and Alzheimer disease-like pathology in transgenic mice. Neurol Res 25:665–674

    Article  PubMed  Google Scholar 

  31. Aliev G, Gasimov E, Obrenovic ME, Fischbach K, Shenk JC, Smith MA et al (2008) Atherosclerotic lesions and mitochondria DNA deletions in brain microvessels: implication in the pathogenesis of Alzheimer’s disease. Vasc Health Risk Manag 4:721–730

    PubMed  Google Scholar 

  32. Chen JX, Yan SS (2010) Role of mitochondrial amyloid-beta in Alzheimer’s disease. J Alzheimers Dis 20(Suppl 2):S569–S578

    PubMed  Google Scholar 

  33. Devi L, Anandatheerthavarada HK (2010) Mitochondrial trafficking of APP and alpha synuclein: relevance to mitochondrial dysfunction in Alzheimer’s and Parkinson’s diseases. Biochim Biophys Acta 1802:11–19

    PubMed  CAS  Google Scholar 

  34. Keller JN, Mark RJ, Bruce AJ, Blanc E, Rothstein JD, Uchida K et al (1997) 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience 80:685–696

    Article  PubMed  CAS  Google Scholar 

  35. Humphries KM, Szweda LI (1998) Selective inactivation of alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal. Biochemistry 37:15835–15841

    Article  PubMed  CAS  Google Scholar 

  36. Swerdlow RH, Burns JM, Khan SM (2010) The Alzheimer’s disease mitochondrial cascade hypothesis. J Alzheimers Dis 20(Suppl 2):S265–S279

    PubMed  Google Scholar 

  37. Parker WD Jr, Parks JK (1995) Cytochrome c oxidase in Alzheimer’s disease brain: purification and characterization. Neurology 45:482–486

    PubMed  Google Scholar 

  38. King MP, Attardi G (1989) Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246:500–503

    Article  PubMed  CAS  Google Scholar 

  39. Trimmer PA, Keeney PM, Borland MK, Simon FA, Almeida J, Swerdlow RH et al (2004) Mitochondrial abnormalities in cybrid cell models of sporadic Alzheimer’s disease worsen with passage in culture. Neurobiol Dis 15:29–39

    Article  PubMed  CAS  Google Scholar 

  40. Khan SM, Cassarino DS, Abramova NN, Keeney PM, Borland MK, Trimmer PA et al (2000) Alzheimer’s disease cybrids replicate beta-amyloid abnormalities through cell death pathways. Ann Neurol 48:148–155

    Article  PubMed  CAS  Google Scholar 

  41. Gabuzda D, Busciglio J, Chen LB, Matsudaira P, Yankner BA (1994) Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative. J Biol Chem 269:13623–13628

    PubMed  CAS  Google Scholar 

  42. Gasparini L, Racchi M, Benussi L, Curti D, Binetti G, Bianchetti A et al (1997) Effect of energy shortage and oxidative stress on amyloid precursor protein metabolism in COS cells. Neurosci Lett 231:113–117

    Article  PubMed  CAS  Google Scholar 

  43. Webster MT, Pearce BR, Bowen DM, Francis PT (1998) The effects of perturbed energy metabolism on the processing of amyloid precursor protein in PC12 cells. J Neural Transm 105:839–853

    Article  PubMed  CAS  Google Scholar 

  44. Blass JP, Baker AC, Ko L, Black RS (1990) Induction of Alzheimer antigens by an uncoupler of oxidative phosphorylation. Arch Neurol 47:864–869

    PubMed  CAS  Google Scholar 

  45. Melov S, Adlard PA, Morten K, Johnson F, Golden TR, Hinerfeld D et al (2007) Mitochondrial oxidative stress causes hyperphosphorylation of tau. PLoS One 2:e536

    Article  PubMed  CAS  Google Scholar 

  46. Escobar-Khondiker M, Höllerhage M, Muriel MP, Champy P, Bach A, Depienne C et al (2007) Annonacin, a natural mitochondrial complex I inhibitor, causes tau pathology in cultured neurons. J Neurosci 27:7827–7837

    Article  PubMed  CAS  Google Scholar 

  47. Hinerfeld D, Traini MD, Weinberger RP, Cochran B, Doctrow SR, Harry J et al (2004) Endogenous mitochondrial oxidative stress: neurodegeneration, proteomic analysis, specific respiratory chain defects, and efficacious antioxidant therapy in superoxide dismutase 2 null mice. J Neurochem 88:657–667

    Article  PubMed  CAS  Google Scholar 

  48. Billingsley ML, Kincaid RL (1997) Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem J 323:577–591

    PubMed  CAS  Google Scholar 

  49. Johnson GV, Hartigan JA (1999) Tau protein in normal and Alzheimer’s disease brain: an update. J Alzheimers Dis 1:329–351

    PubMed  CAS  Google Scholar 

  50. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    Article  PubMed  CAS  Google Scholar 

  51. van der Walt JM, Dementieva YA, Martin ER, Scott WK, Nicodemus KK, Kroner CC et al (2004) Analysis of European mitochondrial haplogroups with Alzheimer disease risk. Neurosci Lett 365:28–32

    Article  PubMed  CAS  Google Scholar 

  52. Edland SD, Silverman JM, Peskind ER, Tsuang D, Wijsman E, Morris JC (1996) Increased risk of dementia in mothers of Alzheimer’s disease cases: evidence for maternal inheritance. Neurology 47:254–256

    PubMed  CAS  Google Scholar 

  53. Wang J, Xiong S, Xie C, Markesbery WR, Lovell MA (2005) Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer’s disease. J Neurochem 93:953–962

    Article  PubMed  CAS  Google Scholar 

  54. Swerdlow RH, Parks JK, Cassarino DS, Maguire DJ, Maguire RS, Bennett JP Jr et al (1997) Cybrids in Alzheimer’s disease: a cellular model of the disease? Neurology 49:918–925

    PubMed  CAS  Google Scholar 

  55. Grazina M, Pratas J, Silva F, Oliveira S, Santana I, Oliveira C (2006) Genetic basis of Alzheimer’s dementia: role of mtDNA mutations. Genes Brain Behav 5(Suppl 2):92–107

    PubMed  CAS  Google Scholar 

  56. Coskun PE, Beal MF, Wallace DC (2004) Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci USA 101:10726–10731

    Article  PubMed  CAS  Google Scholar 

  57. Tanaka N, Goto YI, Akanuma J, Kato M, Kinoshita T, Yamashita F et al (2010) Mitochondrial DNA variants in a Japanese population of patients with Alzheimer’s disease. Mitochondrion 10:32–37

    Article  PubMed  CAS  Google Scholar 

  58. Elson JL, Herrnstadt C, Preston G, Thal L, Morris CM, Edwardson JA et al (2006) Does the mitochondrial genome play a role in the etiology of Alzheimer’s disease? Hum Genet 119:241–254

    Article  PubMed  CAS  Google Scholar 

  59. Wang X, Su B, Zheng L, Perry G, Smith MA, Zhu X (2009) The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. J Neurochem 109(Suppl 1):153–159

    Article  PubMed  CAS  Google Scholar 

  60. Frazier AE, Kiu C, Stojanovski D, Hoogenraad NJ, Ryan MT (2006) Mitochondrial morphology and distribution in mammalian cells. Biol Chem 387:1551–1558

    Article  PubMed  CAS  Google Scholar 

  61. Chan DC (2006) Mitochondrial fusion and fission in mammals. Ann Rev Cell Dev Biol 22:79–99

    Article  CAS  Google Scholar 

  62. Bleazard W, McCaffery JM, King EJ, Bale S, Mozdy A, Tieu Q et al (1999) The dynamin related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat Cell Biol 1:298–304

    Article  PubMed  CAS  Google Scholar 

  63. Sesaki H, Jensen RE (1999) Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J Cell Biol 147:699–706

    Article  PubMed  CAS  Google Scholar 

  64. James DI, Parone PA, Mattenberger Y, Martinou JC (2003) hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 278:36373–36379

    Article  PubMed  CAS  Google Scholar 

  65. Wells RC, Picton LK, Williams SC, Tan FJ, Hill RB (2007) Direct binding of the dynamin-like GTPase, Dnm1, to mitochondrial dynamics protein Fis1 is negatively regulated by the Fis1 N-terminal arm. J Biol Chem 282:33769–33775

    Article  PubMed  CAS  Google Scholar 

  66. Smirnova E, Griparic L, Shurland DL, van der Bliek AM (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256

    PubMed  CAS  Google Scholar 

  67. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252

    Article  PubMed  CAS  Google Scholar 

  68. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev 9:505–518

    CAS  Google Scholar 

  69. Ishihara N, Eura Y, Mihara K (2004) Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci 117:6535–6546

    Article  PubMed  CAS  Google Scholar 

  70. Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL et al (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot–Marie–Tooth neuropathy type 2A. Nat Genet 36:449–451

    Article  PubMed  CAS  Google Scholar 

  71. Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci USA 101:15927–15932

    Article  PubMed  CAS  Google Scholar 

  72. Chen H, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280:26185–26192

    Article  PubMed  CAS  Google Scholar 

  73. Smirnova E, Shurland DL, Ryazantsev SN, van der Bliek AM (1998) A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol 143:351–358

    Article  PubMed  CAS  Google Scholar 

  74. Westermann B (2010) Mitochondrial fusion, fission in cell life, death. Nat Rev Mol Cell Biol 11:872–884

    Article  PubMed  CAS  Google Scholar 

  75. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G et al (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446

    Article  PubMed  CAS  Google Scholar 

  76. Spinazzi M, Cazzola S, Bortolozzi M, Baracca A, Loro E, Casarin A et al (2008) A novel deletion in the GTPase domain of OPA1 causes defects in mitochondrial morphology and distribution, but not in function. Hum Mol Genet 17:3291–3302

    Article  PubMed  CAS  Google Scholar 

  77. DiMauro S, Schon EA (2008) Mitochondrial disorders in the nervous system. Annu Rev Neurosci 31:91–123

    Article  PubMed  CAS  Google Scholar 

  78. Wang X, Su B, Fujioka H, Zhu X (2008) Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients. Am J Pathol 173:470–482

    Article  PubMed  CAS  Google Scholar 

  79. Wang X, Su B, Siedlak SL, Moreira PI, Fujioka H, Wang Y et al (2008) Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci USA 105:19318–19323

    Article  PubMed  CAS  Google Scholar 

  80. Chen D, Lan J, Pei W, Chen J (2000) Detection of DNA base-excision repair activity for oxidative lesions in adult rat brain mitochondria. J Neurosci Res 61:225–236

    Article  PubMed  CAS  Google Scholar 

  81. Fishel ML, Vasko MR, Kelley MR (2006) DNA repair in neurons: so if they don’t divide what’s to repair? Mutat Res 614:24–36

    PubMed  Google Scholar 

  82. Weissman L, Jo DG, Sorensen MM, de Souza-Pinto NC, Markesbery WR, Mattson MP et al (2007) Defective DNA base excision repair in brain from individuals with Alzheimer’s disease and amnestic mild cognitive impairment. Nucleic Acids Res 35:5545–5555

    Article  PubMed  CAS  Google Scholar 

  83. Levey A, Lah J, Goldstein F, Steenland K, Bliwise D (2006) Mild cognitive impairment: an opportunity to identify patients at high risk for progression to Alzheimer’s disease. Clin Ther 28:991–1001

    Article  PubMed  Google Scholar 

  84. Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302:819–822

    Article  PubMed  CAS  Google Scholar 

  85. Swerdlow RH (2009) The neurodegenerative mitochondriopathies. J Alzheimers Dis 17:737–751

    PubMed  CAS  Google Scholar 

  86. Thomas B (2009) Parkinson’s disease: from molecular pathways in disease to therapeutic approaches. Antioxid Redox Signal 11:2077–2082

    Article  PubMed  CAS  Google Scholar 

  87. Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38:518–520

    Article  PubMed  CAS  Google Scholar 

  88. Gu G, Reyes PE, Golden GT, Woltjer RL, Hulette C, Montine TJ et al (2002) Mitochondrial DNA deletions/rearrangements in Parkinson disease and related neurodegenerative disorders. J Neuropathol Exp Neurol 61:634–639

    PubMed  CAS  Google Scholar 

  89. Smigrodzki R, Parks J, Parker WD (2004) High frequency of mitochondrial complex I mutations in Parkinson’s disease and aging. Neurobiol Aging 25:1273–1281

    Article  PubMed  CAS  Google Scholar 

  90. Van der Walt JM, Nicodemus KK, Martin ER, Scott WK, Nance MA, Watts RL et al (2003) Mitochondrial polymorphisms significantly reduce the risk of Parkinson’s disease. Am J Hum Genet 72:804–811

    Article  PubMed  Google Scholar 

  91. Pyle A, Foltynie T, Tiangyou W, Foltynie T, Tiangyou W, Lambert C et al (2005) Mitochondrial DNA haplogroup cluster UKJT reduces the risk of PD. Ann Neurol 57:564–567

    Article  PubMed  Google Scholar 

  92. Autere J, Moilanen JS, Finnila S, Soininen H, Mannermaa A, Hartikainen P et al (2004) Mitochondrial DNA polymorphisms as risk factors for Parkinson’s disease and Parkinson’s disease dementia. Hum Genet 115:29–35

    Article  PubMed  CAS  Google Scholar 

  93. Ghezzi D, Marelli C, Achilli A, Goldwurm S, Pezzoli G, Barone P et al (2005) Mitochondrial DNA haplogroup K is associated with a lower risk of Parkinson’s disease in Italians. Eur J Hum Genet 13:748–752

    Article  PubMed  CAS  Google Scholar 

  94. Huerta C, Castro MG, Coto E, Blazquez M, Ribacoba R, Guisasola LM et al (2005) Mitochondrial DNA polymorphisms and risk of Parkinson’s disease in Spanish population. J Neurol Sci 236:49–54

    Article  PubMed  CAS  Google Scholar 

  95. Horvath R, Kley RA, Lochmuller H, Vorgerd M (2006) Parkinson syndrome, neuropathy, and myopathy caused by the mutation A8344G (MERRF) in tRNALys. Neurology 68:56–58

    Article  Google Scholar 

  96. Davidzon G, Greene P, Mancuso M, Klos KJ, Ahlskog JE, Hirano M et al (2006) Early-onset familial parkinsonism due to POLG mutations. Ann Neurol 59:859–862

    Article  PubMed  CAS  Google Scholar 

  97. Luoma P, Melberg A, Rinne JO, Kaukonen JA, Nupponen NN, Chalmers RM et al (2004) A Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: clinical and molecular genetic study. Lancet 364:875–882

    Article  PubMed  CAS  Google Scholar 

  98. Mancuso M, Filosto M, Oh SJ, DiMauro S (2004) A novel polymerase gamma mutation in a family with ophthalmoplegia, neuropathy, and Parkinsonism. Arch Neurol 61:1777–1779

    Article  PubMed  Google Scholar 

  99. Mehta P, Mellick GD, Rowe DB, Halliday GM, Jones MM, Manwaring N et al (2009) Mitochondrial DNA haplogroups J and K are not protective for Parkinson’s disease in the Australian community. Mov Disord 24:290–292

    Article  PubMed  Google Scholar 

  100. Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1:1269

    Article  PubMed  CAS  Google Scholar 

  101. Bindoff LA, Birch-Machin M, Cartlidge NE, Parker WD Jr, Turnbull DM (1989) Mitochondrial function in Parkinson’s disease. Lancet 2:49

    Article  PubMed  CAS  Google Scholar 

  102. Benecke R, Strumper P, Weiss H (1993) Electron transfer complexes I and IV of platelets are abnormal in Parkinson’s disease but normal in Parkinson-plus syndromes. Brain 116:1451–1463

    Article  PubMed  Google Scholar 

  103. Varghese M, Pandey M, Samanta A, Gangopadhyay PK, Mohanakumar KP (2009) Reduced NADH coenzyme Q dehydrogenase activity in platelets of Parkinson’s disease, but not Parkinson plus patients, from an Indian population. J Neurol Sci 279:39–42

    Article  PubMed  CAS  Google Scholar 

  104. Beal MF (2003) Bioenergetic approaches for neuroprotection in Parkinson’s disease. Ann Neurol 53:S39–S47

    Article  PubMed  CAS  Google Scholar 

  105. Gu M, Cooper JM, Taanman JW, Schapira AH (1998) Mitochondrial DNA transmission of the mitochondrial defect in Parkinson’s disease. Ann Neurol 44:177–186

    Article  PubMed  CAS  Google Scholar 

  106. Beal MF (2005) Mitochondria take center stage in aging and neurodegeneration. Ann Neurol 58:495–505

    Article  PubMed  CAS  Google Scholar 

  107. Gandhi S, Muqit MM, Stanyer L, Healy DG, Abou-Sleiman PM, Hargreaves I (2006) PINK1 protein in normal human brain and Parkinson’s disease. Brain 129:1720–1731

    Article  PubMed  CAS  Google Scholar 

  108. Silvestri L, Caputo V, Bellacchio E, Atorino L, Dallapiccola B, Valente EM et al (2005) Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet 14:3477–3492

    Article  PubMed  CAS  Google Scholar 

  109. Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH et al (2006) Drosophila Pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441:1162–1166

    Article  PubMed  CAS  Google Scholar 

  110. Dodson MW, Guo M (2007) Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson’s disease. Curr Opin Neurobiol 17:331–337

    Article  PubMed  CAS  Google Scholar 

  111. Deas E, Plun-Favreau H, Wood NW (2009) PINK1 function in health and disease. EMBO Mol Med 1:152–165

    Article  PubMed  CAS  Google Scholar 

  112. Yang Y, Ouyang Y, Yang L, Beal MF, McQuibban A, Vogel H et al (2008) Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci USA 105:7070–7075

    Article  PubMed  CAS  Google Scholar 

  113. Deng H, Dodson MW, Huang H, Guo M (2008) The Parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci USA 105:14503–14508

    Article  PubMed  CAS  Google Scholar 

  114. Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, Pallanck LJ (2008) The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci USA 105:1638–1643

    Article  PubMed  CAS  Google Scholar 

  115. Chen H, Chan DC (2009) Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet 18(R2):R169–R176

    Article  PubMed  CAS  Google Scholar 

  116. Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803

    Article  PubMed  CAS  Google Scholar 

  117. Chinta SJ, Mallajosyula JK, Rane A, Andersen JK (2010) Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci Lett 486:235–239

    Article  PubMed  CAS  Google Scholar 

  118. Martin LJ, Pan Y, Price AC, Sterling W, Copeland NG, Jenkins NA et al (2006) Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci 26:41–50

    Article  PubMed  CAS  Google Scholar 

  119. Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E et al (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299:256–259

    Article  PubMed  CAS  Google Scholar 

  120. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  PubMed  CAS  Google Scholar 

  121. Bruijn LI, Miller TM, Cleveland DW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27:723–779

    Article  PubMed  CAS  Google Scholar 

  122. Perry JJ, Shin DS, Tainer JA (2010) Amyotrophic lateral sclerosis. Adv Exp Med Biol 685:9–20

    Article  PubMed  CAS  Google Scholar 

  123. Kuźma-Kozakiewicz M, Kwieciński H (2009) The genetics of amyotrophic lateral sclerosis. Neurol Neurochir Pol 43:538–549

    PubMed  Google Scholar 

  124. Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672

    Article  PubMed  CAS  Google Scholar 

  125. Rothstein JD (2009) Current hypotheses for underlying biology of amyotrophic lateral sclerosis. Ann Neurol 65:S3–S9

    Article  PubMed  CAS  Google Scholar 

  126. Swarup V, Julien JP (2011) ALS pathogenesis: recent insights from genetics and mouse models. Prog Neuropsychopharmacol Biol Psychiatry 35:363–369

    Article  PubMed  CAS  Google Scholar 

  127. Manfredi G, Xu Z (2005) Mitochondrial dysfunction and its role in motor neuron degeneration in ALS. Mitochondrion 5:77–87

    Article  PubMed  CAS  Google Scholar 

  128. Shi P, Gal J, Kwinter DM, Liu X, Zhu H (2010) Mitochondrial dysfunction in amyotrophic lateral sclerosis. Biochim Biophys Acta 1802:45–51

    PubMed  CAS  Google Scholar 

  129. Abramov AY, Smulders-Srinivasan TK, Kirby DM, Acin-Perez R, Enriquez JA, Lightowlers RN et al (2010) Mechanism of neurodegeneration of neurons with mitochondrial DNA mutations. Brain 133:797–807

    Article  PubMed  Google Scholar 

  130. Comi GP, Bordoni A, Salani S, Franceschina L, Sciacco M, Prelle A et al (1998) Cytochrome c oxidase subunit I microdeletion in a patient with motor neuron disease. Ann Neurol 43:110–116

    Article  PubMed  CAS  Google Scholar 

  131. Borthwick GM, Taylor RW, Walls TJ, Tonska K, Taylor GA, Shaw PJ et al (2006) Motor neuron disease in a patient with a mitochondrial tRNAIle mutation. Ann Neurol 59:570–574

    Article  PubMed  CAS  Google Scholar 

  132. Dhaliwal GK, Grewal RP (2000) Mitochondrial DNA deletion mutation levels are elevated in ALS brains. Neuroreport 11:2507–2509

    Article  PubMed  CAS  Google Scholar 

  133. Ro LS, Lai SL, Chen CM, Chen ST (2003) Deleted 4977-bp mitochondrial DNA mutation is associated with sporadic amyotrophic lateral sclerosis: a hospital-based case-control study. Muscle Nerve 28:737–743

    Article  PubMed  CAS  Google Scholar 

  134. Crugnola V, Lamperti C, Lucchini V, Ronchi D, Peverelli L, Prelle A et al (2010) Mitochondrial respiratory chain dysfunction in muscle from patients with amyotrophic lateral sclerosis. Arch Neurol 67:849–854

    Article  PubMed  Google Scholar 

  135. Kwong JQ, Beal MF, Manfredi G (2006) The role of mitochondria in inherited neurodegenerative diseases. J Neurochem 97:1659–1675

    Article  PubMed  CAS  Google Scholar 

  136. Greenamyre JT (2007) Huntington’s disease. Making connections. N Engl J Med 356:518–520

    Article  PubMed  CAS  Google Scholar 

  137. Bossy-Wetzel E, Petrilli A, Knott AB (2008) Mutant huntingtin and mitochondrial dysfunction. Trends Neurosci 31:609–616

    Article  PubMed  CAS  Google Scholar 

  138. Reddy PH, Mao P, Manczak M (2009) Mitochondrial structural and functional dynamics in Huntington’s disease. Brain Res Rev 61:33–48

    Article  PubMed  CAS  Google Scholar 

  139. Trushina E, Dyer RB, Badger JD 2nd, Ure D, Eide L, Tran DD et al (2004) Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol Cell Biol 24:8195–8209

    Article  PubMed  CAS  Google Scholar 

  140. Orr AL, Li S, Wang CE, Li H, Wang J, Rong J et al (2008) N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking. J Neurosci 28:2783–2792

    Article  PubMed  CAS  Google Scholar 

  141. Chang DT, Rintoul GL, Pandipati S, Reynolds IJ (2006) Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons. Neurobiol Dis 22:388–400

    Article  PubMed  CAS  Google Scholar 

  142. Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D (2006) Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127:59–69

    Article  PubMed  CAS  Google Scholar 

  143. Inagaki R, Tagawa K, Qi ML, Enokido Y, Ito H, Tamura T et al (2008) Omi/HtrA2 is relevant to the selective vulnerability of striatal neurons in Huntington’s disease. Eur J Neurosci 28:30–40

    Article  PubMed  Google Scholar 

  144. Oldfors A, Lindberg C (1999) Inclusion body myositis. Curr Opin Neurol 12:527–533

    Article  PubMed  CAS  Google Scholar 

  145. Dalakas MC (2010) Inflammatory muscle diseases: a critical review on pathogenesis and therapies. Curr Opin Pharmacol 10:1–7

    Article  CAS  Google Scholar 

  146. Salajegheh M, Pinkus JL, Nazareno R, Amato AA, Parker KC, Greenberg SA (2009) Nature of ‘‘Tau’’ immunoreactivity in normal myonuclei and inclusion body myositis. Muscle Nerve 40:520–528

    Article  PubMed  CAS  Google Scholar 

  147. Weihl CC, Temiz P, Miller SE, Watts G, Smith C, Forman M et al (2008) TDP-43 accumulation in inclusion body myopathy muscle suggests a common pathogenic mechanism with frontotemporal dementia. J Neurol Neurosurg Psychiatry 79:1186–1189

    Article  PubMed  CAS  Google Scholar 

  148. Dalakas MC (2008) Interplay between inflammation and degeneration: using inclusion body myositis to study neuroinflammation. Ann Neurol 64:1–3

    Article  PubMed  Google Scholar 

  149. Oldfors A, Moslemi AR, Jonasson L, Ohlsson M, Kollberg G, Lindberg C (2006) Mitochondrial abnormalities in inclusion-body myositis. Neurology 66:S49–S55

    Article  PubMed  CAS  Google Scholar 

  150. Rifai Z, Welle S, Kamp C, Thornton CA (1995) Ragged red fibers in normal aging and inflammatory myopathy. Ann Neurol 37:24–29

    Article  PubMed  CAS  Google Scholar 

  151. Oldfors A, Moslemi AR, Fyhr IM, Holme E, Larsson NG, Lindberg C (1995) Mitochondrial DNA deletions in muscle fibers in inclusion body myositis. J Neuropathol Exp Neurol 54:581–587

    Article  PubMed  CAS  Google Scholar 

  152. Dahlbom K, Lindberg C, Oldfors A (2002) Inclusion body myositis: morphological clues to correct diagnosis. Neuromuscul Disord 12:853–857

    Article  PubMed  CAS  Google Scholar 

  153. Oldfors A, Larsson NG, Lindberg C, Holme E (1993) Mitochondrial DNA deletions in inclusion body myositis. Brain 116:325–336

    Article  PubMed  Google Scholar 

  154. Fayet G, Jansson M, Sternberg D, Moslemi AR, Blondy P, Lombès A et al (2002) Ageing muscle: clonal expansions of mitochondrial DNA point mutations and deletions cause focal impairment of mitochondrial function. Neuromuscul Disord 12:484–493

    Article  PubMed  Google Scholar 

  155. Pak JW, Herbst A, Bua E, Gokey N, McKenzie D, Aiken JM (2003) Mitochondrial DNA mutations as a fundamental mechanism in physiological declines associated with aging. Aging Cell 2:1–7

    Article  PubMed  CAS  Google Scholar 

  156. Aiken J, Bua E, Cao Z, Lopez M, Wanagat J, McKenzie D et al (2002) Mitochondrial DNA deletion mutations and sarcopenia. Ann NY Acad Sci 959:412–423

    Article  PubMed  CAS  Google Scholar 

  157. Rugarli EI, Langer T (2006) Translating m-AAA protease function in mitochondria to hereditary spastic paraplegia. Trends Mol Med 12:262–269

    Article  PubMed  CAS  Google Scholar 

  158. Martinelli P, Rugarli EI (2010) Emerging roles of mitochondrial proteases in neurodegeneration. Biochim Biophys Acta 1797:1–10

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Filosto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filosto, M., Scarpelli, M., Cotelli, M.S. et al. The role of mitochondria in neurodegenerative diseases. J Neurol 258, 1763–1774 (2011). https://doi.org/10.1007/s00415-011-6104-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-011-6104-z

Keywords

Navigation