Skip to main content
Log in

Linear viscoelasticity of ZrO 2 nanoparticle dispersions with associative polymers

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

ZrO2 nanoparticle dispersions containing associative polymers exhibit two relaxation modes: Maxwellian behavior at high frequency imparted by the associating polymers and a power law spectrum at low frequency generated by the particle dynamics. The timescales and volume fraction dependence of the dispersions reflect weak attractions between particles with adsorbed polymer layers dispersed in a percolated network of associative polymer. The Baxter stickiness parameter extracted from the high frequency viscosity data indicates strong attractions, whereas the high frequency modulus reveals three sources of elasticity: micelle–micelle associations in the solution, rigidity of the particles and adsorbed layer, and adsorbed layer–adsorbed layer interactions. The sol-gel transition of the dispersions occurs around 12–14% particle loading. Comparison with latex dispersions suggests a slower relaxation mode and greater rigidity with the ZrO2 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Agrawal SK, Sanabria-DeLong N, Tew GN, Bhatia SR (2008) Nanoparticle-reinforced associative network hydrogels. Langmuir 24:13,148–13,154

    Google Scholar 

  • Alami E, Almgren M, Brown W, Francois J (1996) Aggregation of hydrophobically end-capped poly(ethylene oxide) in aqueous solutions. Fluorescence and light-scattering studies. Macromolecules 29:2229–2243

    CAS  Google Scholar 

  • Annable T, Buscall R, Ettelaie R, Whittlestone D (1993) The rheology of solutions of associating polymers: comparison of experimental behavior with transient network theory. J Rheol 37:695–726

    Article  CAS  Google Scholar 

  • Aubry T, Bossard F, Moan M (2002) Laponite dispersions in the presence of an associative polymer. Langmuir 18:155–159

    Article  CAS  Google Scholar 

  • Batchelor G, Green J (1972) The determination of the bulk stress in a suspension of spherical particles to order c 2. J Fluid Mech 56:401–427

    Article  Google Scholar 

  • Baumgaertel M, A Schausberger A, Winter H (1990) The relaxation of polymers with linear flexible chains of uniform length. Rheol Acta 29:400–408

    Article  CAS  Google Scholar 

  • Baxter RJ (1968) Percus-Yevick equation for hard spheres with surface adhesion. J Chem Phys 63:2770–2774

    Article  Google Scholar 

  • Bergenholtz J, Brady J, Vicic M (2002) The non-newtonian rheology of dilute colloidal suspensions. J Fluid Mech 456:239–275

    Article  CAS  Google Scholar 

  • Bergstrom L (1997) Hamaker constants of inorganic materials. Adv Colloid Interface Sci 70:125–169

    Article  CAS  Google Scholar 

  • Buscall R, McGowan JI, Morton-Jones AJ (1993) The rheology of concentrated dispersions of weakly attracting colloidal particles with and without wall slip. J Rheol 37:621–641

    Article  CAS  Google Scholar 

  • Cicchocki B, Felderhof B (1990) Diffusion coefficients and effective viscosity of suspensions of sticky hard spheres with hydrodynamic interactions. J Chem Phys 93(6):4427

    Article  Google Scholar 

  • Einstein A (1905) On the motion of small particles suspended in a stationary liquid, as required by the molecular kinetic theory of heat. Ann Phys 17:549–560

    Article  CAS  Google Scholar 

  • English RJ, Gulati HS, Jenkins RD, Khan S (1997) Solution rheology of a hydrophobically modified alkali-soluble associative polymer. J Rheol 41:427–444

    Article  CAS  Google Scholar 

  • Fonnum G, Bakke J, Hansen FK (1993) Associative thickeners. part i: synthesis, rheology and aggregation behavior. Colloid and Polymer Science 271:380–389

    Article  CAS  Google Scholar 

  • Glass J (1989) Polymers in aqueous media: performance through association. American Chemical Society, Washington, DC, USA

    Book  Google Scholar 

  • Green MS, Tobolsky AV (1946) A new approach to the theory of relaxing polymeric media. J Chem Phys 14:80–92

    Article  CAS  Google Scholar 

  • Huang Y, Santore MM (2002) Dynamics in adsorbed layers of associative polymers in the limit of strong backbone-surface attractions. Langmuir 18:2158–2165

    Article  CAS  Google Scholar 

  • Hulden M (1994) Hydrophobically modified urethane–ethoxylate (heur) associative thickeners 2. interaction with latex. Colloids and Surfaces A: Physicochemical and Engineering Aspects 88:207–221

    Article  CAS  Google Scholar 

  • Isa L, Besseling R, Poon WCK (2007) Shear zones and wall slip in the capillary flow of concentrated colloidal suspensions. Phys Rev Lett 98:1983–1905

    Article  Google Scholar 

  • Jenkins R (1990) The fundamental thickening mechanism of associative polymers in latex systems: a rheological study. PhD thesis, Lehigh University

  • Jenkins RD, Silebi CA, El-Aasser MS (1989) Steady shear and linear viscoelastic material properties of associative thickener solutions. Polymeric Materials Science and Engineering 61:629–633

    CAS  Google Scholar 

  • Kamibayashi M, Ogura H, Otsubo Y (2006) Rheological behavior of suspensions of silica nanoparticles in associating polymer solutions. Ind Eng Chem Res 45:6899–6905

    Article  CAS  Google Scholar 

  • Koleske JV (1995) Paint and coating testing manual. 14 Sub edition. ASTM Intl, PA, USA

    Book  Google Scholar 

  • Kramers H (1927) La diffusion de la lumiere par les atomes. Atti Cong Intern Fisica, (Transactions of Volta Centenary Congress) Como 2:545–557

    Google Scholar 

  • Kronig R (1926) On the theory of the dispersion of x-rays. Opt Soc Am 12:547–557

    Article  CAS  Google Scholar 

  • Langmuir I (1916) The constitution and fundamental properties of solids and liquids. part i. solids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  • Larson R (1999) The structure and rheology of complex fluids. Oxford University Press, USA

    Google Scholar 

  • Lionberger RA, Russel WB (1994) High frequency modulus of hard sphere colloids. J Rheol 38:1885–1907

    Article  CAS  Google Scholar 

  • Liptak B (1995) Instrument engineers’ handbook, third edition: process measurement and analysis. Butterworth-Heinemann, USA

    Google Scholar 

  • Lochhead R (1998) A review of recent advances in the polymeric delivery of attributes in cosmetics and personal care products. ACS Symp Ser 1053:3–22

    Article  Google Scholar 

  • van Maanen G, Seeley S, Capracotta M, White S, Bukovnik R, Hartmann J, Martin J, Spontak R (2005) Property and morphology development in nanocomposite thermoplastic elastomer gels. Langmuir 29:3106–3115

    Article  Google Scholar 

  • Mortimer R (2000) Physical chemistry, 2nd edition. Academic Press, USA

    Google Scholar 

  • Olesen K, Bassett D, Wilkerson C (1999) Surfactant co-thickening in model associative polymers. Prog Org Coat 35:161–170

    Article  CAS  Google Scholar 

  • Patton T (1979) Paint flow and pigment dispersion a rheological approach to coating and ink technology (2nd ed). Wiley, NY

    Google Scholar 

  • Pham QT, Russel WB, Lau W (1998) The effects of adsorbed layers and solution polymers on the viscosity of dispersions containing associative polymers. J Rheol 42:159–176

    Article  CAS  Google Scholar 

  • Pham QT, Russel WB, Thibeault JC, Lau W (1999) Micellar solutions of associative triblock copolymers: the relationship between structure and rheology. Macromolecules 32(15):5139–5146

    Article  CAS  Google Scholar 

  • Pham QT, Russel WB, Thibeault JC, Lau W (1999) Polymeric and colloidal modes of relaxation in latex dispersions containing associative triblock copolymers. J Rheol 43(6):1599–1615

    Article  CAS  Google Scholar 

  • Pham QT, Thibeault JC, Lau W, Russel WB (2000) Dispersions containing PEO with C16 hydrophobes: adsorption and rheology. Associative Polymers in Aqueous Media pp 221–238

  • Pham QT, Thibeault JC, Russel WB (2000) Linear viscoelasticity of polymer latices containing PEO with terminal hydrophobes. Macromol Symp pp 557–566

  • Russel W (1984) Huggins coefficient as a means of characterizing suspended particles. Trans. Faraday Soc J Chem Soc, Faraday Trans 1(80):31–41

    Article  Google Scholar 

  • Sanguandekul S, El-Aasser MS, Silebi CA (1998) Absorbed layer thicknesses of associative polymers on TiO2 particles. ACS Symp Ser 693:148–160

    Article  CAS  Google Scholar 

  • Saito Y, Ogura H, Otsubo Y (2008) Rheological behavior of silica suspensions in aqueous solutions of associating polymer. Colloid Polym Sci 286:1537–1544

    Article  CAS  Google Scholar 

  • Saito Y, Ogura H, Otsubo Y (2009) Effect of associating polymer on the viscosity behavior of suspensions consisting of particles with different surface properties. Colloid Polym Sci 287:1229–1235

    Article  CAS  Google Scholar 

  • Semenov A, Joanny J, Khokhlov A (1995) Associating polymers: equilibrium and linear viscoelasticity. Macromolecules 28:1066–1075

    Article  CAS  Google Scholar 

  • Sperry P, Hopfenberg H, Thomas N (1981) Flocculation of latex by water-soluble polymers: experimental confirmation of a nonbridging, nonadsorptive, volume-restriction mechanism. J Colloid Interface Sci 82:62–7

    Article  CAS  Google Scholar 

  • Sperry PR, Thibeault J, Kastanek E (1987) Flocculation and rheological characteristics of mixtures of latices and water-soluble polymeric thickeners. Adv Org Coat Sci Technol 9:1–11

    Google Scholar 

  • Tanaka F, Edwards SF (1992) Viscoelastic properties of physically crosslinked networks, parts 1 to 3. J Non-Newtonian Fluid Mech 43:247–309

    Article  CAS  Google Scholar 

  • Tanaka R, Williams P, Meadows J, Phillips G (1992) The adsorption of hydroxyethyl cellulose and hydrophobically modified hydroxyethyl cellulose onto polystyrene latex. Colloids Surf 66(1):63–72

    Article  CAS  Google Scholar 

  • Tanner R (1985) Engineering rheology. Oxford University Press, USA

    Google Scholar 

  • Taylor K, Nasr-El-Din H (1998) Water-soluble hydrophobically associating polymers for improved oil recovery: a literature review. J Petrol Science Eng 19(3-4):265–280

    Article  CAS  Google Scholar 

  • Wang Y, Winnik M (1990) Onset of aggregation for water soluble polymeric associative thickeners: a fluorescence study. Langmuir 6:1437–1439

    Article  CAS  Google Scholar 

  • Winnik M, Yekta A (1997) Associative polymers in aqueous solution. Curr Opin Colloid Interface Sci 2(4):424– 436

    Article  CAS  Google Scholar 

  • Winter H (1987) Can the gel point of a cross-linking polymer be detected by the G -G crossover? Polym Eng Sci 27(22):1698–1702

    Article  CAS  Google Scholar 

  • Winter H (1994) The occurrence of self-similar relaxation in polymers. J Non-Cryst Solids 172-174:1158–1167

    Article  CAS  Google Scholar 

  • Winter H, Mours M (1997) Rheology of polymers near their liquid-solid transitions. Adv Polym Sci 134:165–234

    Article  CAS  Google Scholar 

  • Xu B, Yekta A, Li L, Masoumi Z, Winnik MA (1996) The functionality of associative polymer networks: the association behavior of hydrophobically modified urethane-ethoxylate (HEUR) associative polymers in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects 112(2–3):239–250

    Article  CAS  Google Scholar 

  • Yekta A, Xu B, Duhamel J, Adiwidjaja H, Winnik M (1995) Fluorescence studies of associating polymers in water: determination of the chain end aggregation number and a model for the association process. Macromolecules 28:956–966

    Article  CAS  Google Scholar 

  • Yoshimura A, Prud’homme RK (1988) Wall slip corrections for couette and parallel disk viscometers. J Rheol 32:53–67

    Article  CAS  Google Scholar 

  • Zhu B, Gu T (1989) General isotherm equation for adsorption of surfactants at solid/liquid interfaces. Trans Faraday Soc J Chem Soc, Faraday Trans 1 85:3813–3817

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William B. Russel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ndong, R.S., Russel, W.B. Linear viscoelasticity of ZrO 2 nanoparticle dispersions with associative polymers. Rheol Acta 51, 771–782 (2012). https://doi.org/10.1007/s00397-012-0633-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-012-0633-y

Keywords

Navigation