Skip to main content

Advertisement

Log in

Role of TGF-β1, its receptor TGFβRII, and Smad proteins in the progression of colorectal cancer

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Aim

In the current study, we investigated the expression of TGF-β1, its receptor TGFβRII, and the signaling proteins Smad4 and Smad7 in colorectal cancer tissue in relation to infiltration with antigen-presenting cells and some clinical and pathologic parameters of disease progression in patients with colorectal cancer (CRC).

Materials and methods

The immunohistochemical expression of TGF-β1, TGFβRII, Smad4, Smad7, HLA-DR antigen, CD1a, CD83, and CD68 was evaluated in 142 patients (50 females and 92 males) with CRC, followed-up for 6–8 years period.

Results

In our study, 127 (89.4%) out of 142 colorectal cancers displayed cytoplasmic TGF-β1 immunoreactivity. Common-mediator Smad4 was detected in the tumor cytoplasm in 124 cancers (79.5%) and inhibitory Smad7 immunostaining was observed in 110 (77.4%) tumor specimens. TGFβRII was expressed on tumor cell membranes in 119 (76.3%) of the cancers. The increased TGF-β1 expression in tumor cytoplasm was related to low CD68+- and CD83+-cell infiltration in tumor tissues. Patients with TGF-β1 overexpression had worse prognosis after surgical therapy compared to those with low expression of TGF-β1. The observed association was more pronounced for the patients in T1–T2 stage (p = 0.0015).

Conclusions

The expression of TGF-β1, its receptor TGFβRII, and signaling proteins Smad4 and Smad7 was observed in the majority of colorectal cancer specimens. Our results suggest that TGF-β1 production by tumor cells may affect the tumor environment via suppression of tumor-infiltrating immune cells and probably contributes to tumor cells aggressiveness through autocrine activation of Smad signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baker K, Chong G, Foulkes WD, Jass JR (2006) Transforming growth factor-beta pathway disruption and infiltration of colorectal cancers by intraepithelial lymphocytes. Histopathology 49:371–380

    Article  CAS  PubMed  Google Scholar 

  2. Korchynskyi O, Landstrom M, Stoika R, Funa K, Heldin C-H, ten Dijke P, Souchelnytskyi S (1999) Expression of Smad proteins in human colorectal cancer. Int J Cancer 82:197–202

    Article  CAS  PubMed  Google Scholar 

  3. Elliot RL, Blobe GC (2005) Role of transforming growth factor beta in human cancer. J Clin Oncol 23:2078–2093

    Article  CAS  Google Scholar 

  4. Bacman D, Merkel S, Croner R, Papadopoulos T, Brueckl W, Dimmler A (2007) TGF-beta receptor downregulation in tumor-associated stroma worsens prognosis and high-grade tumours show more tumour-associated macrophages and lower TGF-beta1 expression in colon carcinoma: a retrospective study. BMC Cancer 7:156–166

    Article  PubMed  CAS  Google Scholar 

  5. Xu Y, Pashe B (2007) TGF-β signaling alterations and susceptibility to colorectal cancer. Hum Mol Genet 16(SPEC1):R14-R20. doi:10.1093/hmg/dd1486

  6. Heldin C-H, Miyazono K, ten Duke P (1997) TGF- β signaling from cell membrane to nucleus via Smad proteins. Nature 390:465–471

    Article  CAS  PubMed  Google Scholar 

  7. Derynck R, Feng X-H (1997) TGF- β receptor signaling. Biochim Biophys Acta 1333:F105–F150

    CAS  PubMed  Google Scholar 

  8. Engle SJ, Hoying JB, Boivin GP, Ormsby I, Gartside PS, Doetschman T (1999) Transforming growth factor β1 suppresses nonmetastatic colon cancer at an early stage of tumorigenesis. Cancer Res 59:3379–3386

    CAS  PubMed  Google Scholar 

  9. Friedman E, Gold LI, Klimstra D, Zeng ZS, Winawer S, Cohen A (1995) High levels of transforming growth factor beta 1 correlate with disease progression in human colon cancer. Cancer Epidemiol Biomarkers Prev 4:549–554

    CAS  PubMed  Google Scholar 

  10. Robson H, Anderson E, James RD, Schofield PF (1996) Transforming growth factor beta 1 expression in human colorectal tumors: an independent prognostic marker in a subgroup of poor prognosis patients. Br J Cancer 74:753–758

    CAS  PubMed  Google Scholar 

  11. Shibahara T, Si-Tahar M, Shaw SK, Madara JL (2000) Adhesion molecules expressed on homing lymphocytes in model intestinal epithelia. Gastroenterology 118:289–298

    Article  CAS  PubMed  Google Scholar 

  12. Reinacher-Schick A, Baldus SE, Romdhana B, Landsberg S, Zapatka M, Monig SP, Holscher AH, Dienes HP, Schmiegel W, Schwarte-Waldhoff I (2004) Loss of Smad4 correlates with loss of the invasion suppressor E-cadherin in advanced colorectal carcinomas. J Pathol 202:412–420

    Article  CAS  PubMed  Google Scholar 

  13. Bates RC, Mercurio AM (2005) The epithelial-mesenchymal transition (EMT) and colorectal cancer progression. Cancer Biol Ther 4:365–370

    Article  CAS  PubMed  Google Scholar 

  14. Talmadge JE, Donkor M, Scholar E (2007) Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metast Rev 26:373–400

    Article  Google Scholar 

  15. NakayamaY NN, Minagawa N, Inoue Y, Katsuki T, Onitsuka K, Sako T, Hirata K, Nagata N, Itoh H (2002) Relationships between tumor-associated macrophages and clinicopathological factors in patients with colorectal cancer. Anticancer Res 22:4291–4296

    Google Scholar 

  16. Shurin MR, Shurin GV, Lokshin A, Yurkovetsky Z, Gutkin DW, Chatta G, Zhong H, Han B, Ferris RL (2006) Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies? Cancer Metastasis Rev 25:333–356

    Article  CAS  PubMed  Google Scholar 

  17. Miygawa S, Soeda J, Takagi S, Miwa S, Ichikawa E, Noike T (2004) Prognostic significance of mature dendritic cells and factors associated with their accumulation in metastatic liver tumors from colorectal cancer. Hum Pathol 35:1392–1396

    Article  Google Scholar 

  18. Gulubova М, Manolova I, Cirovski G, Sivrev D (2008) Recruitment of dendritic cells in human liver with metastases. Clin Exp Metast 25:777–785

    Article  CAS  Google Scholar 

  19. UICC. TNM Classification of Malignant Tumours 6th ed (2002) In: Sobin LH, Wittekind Ch (eds) Wiley-Liss, New York

  20. Kioshima T, Kobayashi I, Matsuo K, Ishibashi Y, Miyoshi A, Akashi Y, Sakai H (1998) Immunohistochemical localization of laminin, collagen type IV and heparan sulfate proteoglycan in human colorectal adenocarcinoma: correlation with local invasive pattern and lymph node metastasis. Acta Histochem Cytochem 31:39–47

    Google Scholar 

  21. Gulubova M, Vlaykova T (2006) Immunohistochemical assessment of fibronectin and tenascin and their integrin receptors alpha5beta1 and alpha9beta1 in gastric and colorectal cancers with lymph node and liver metastases. Acta Histochem 108:25–35

    Article  CAS  PubMed  Google Scholar 

  22. Guzinska-Ustymowicz K, Kemona A (2005) Transforming growth factor beta can be a parameter of aggressiveness of pT1 colorectal cancer. World J Gastroenterol 11:1193–1195

    CAS  PubMed  Google Scholar 

  23. Von Rahden BHA, Stein HJ, Feith M, Puhringer F, Theisen J, Siewert R, Sarbia M (2006) Overexpression of TGF-β1 in esophageal (Barrett’s) adenocarcinoma is associated with advanced stage of disease and poor prognosis. Mol Carcinog 45:786–794

    Article  CAS  Google Scholar 

  24. Lu Y, Wu L-Q, Li C-S, Wang S-G, Han B (2008) Expression of transforming growth factors in hepatocellular carcinoma and its relations with clinicopathological parameters and prognosis. Hepatobiliary Pancreat Dis Int 7:174–178

    PubMed  Google Scholar 

  25. Park YN, Chae KJ, Oh B-K, Choi J, Choi KS, Park C (2004) Expression of Smad7 in hepatocellular carcinoma and dysplastic nodules: resistance mechanism to transforming growth factor-β. Hepato-Gastroenterol 51:396–400

    CAS  Google Scholar 

  26. Picon A, Gold LI, Wang J, Cohen A, Friedman E (1998) A subset of metastatic human colon cancers expresses elevated levels of transforming growth factor β1. Cancer Epidemiol Biomark Prev 7:497–504

    CAS  Google Scholar 

  27. Chang H-L, Gillett N, Figari I, Lopez A, Palladino M, Derynck R (1993) Increased transforming growth factor β expression inhibits cell proliferation in vitro, yet increases tumorigenicity and tumor growth of Meth A sarcoma cells. Cancer Res 53:4391–4398

    CAS  PubMed  Google Scholar 

  28. Shim KS, Kim KH, Han WS, Park EB (1999) Elevated serum levels of transforming growth factor- β1 in patients with colorectal carcinoma. Cancer 85:554–561

    Article  CAS  PubMed  Google Scholar 

  29. Gold L, Saxena B, Mittalk K, Marmor M, Goswami S, Nactigal L, Kork M, Demopoulos R (1994) Increased expression of transforming growth factor β isoforms and basic fibroblast growth factor in complex hyperplasia and adenocarcinoma of the endometrium: evidence for paracrine and autocrine action. Cancer Res 54:2347–2358

    CAS  PubMed  Google Scholar 

  30. Gorsch S, Memoli V, Stukel T, Gold L, Arrick B (1992) Immunohistochemical staining for transforming growth factor β1 associates with disease progression in human breast cancer. Cancer Res 52:6949–6952

    CAS  PubMed  Google Scholar 

  31. Bellone G, Carbone A, Tibaudi D, Mauri F, Ferrero I, Smirne C, Suman F, Rivetti C, Migliaretti G, Camandona M, Palestro G, Emanuelli G, Rodeck U (2001) Differential expression of transforming growth factors- β1, -β2 and -β3 in human colon carcinoma. Eur J Cancer 37:224–233

    Article  CAS  PubMed  Google Scholar 

  32. Alazzouzi H, Alhopuro P, Salovaara R, Sammalkorpi H, Jarvinen H, Mecklin J-P, Hemminki A, Schwartz S, Aaltonen L, Arango D (2005) Smad4 as a prognostic marker in colorectal cancer. Clin Cancer Res 11:2606–2611

    Article  CAS  PubMed  Google Scholar 

  33. Isaksson-Mettavainio M, Palmqvist R, Forssell J, Stenling R, Oberg A (2006) Smad4/DPC4 expression and prognosis in human colorectal cancer. Anticancer 26:507–510

    Google Scholar 

  34. Javelaud D, Delmas V, Moller M, Sextius P, Andre J, Menashi S, Larue L, Mauviel A (2005) Stable verexpression of Smad7 in human melanoma cells inhibits their tumorigenicity in vitro and in vivo. Oncogene 24:7624–7629

    Article  CAS  PubMed  Google Scholar 

  35. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B et al (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268:1336–1338

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya Gulubova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulubova, M., Manolova, I., Ananiev, J. et al. Role of TGF-β1, its receptor TGFβRII, and Smad proteins in the progression of colorectal cancer. Int J Colorectal Dis 25, 591–599 (2010). https://doi.org/10.1007/s00384-010-0906-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-010-0906-9

Keywords

Navigation