Skip to main content
Log in

Sensitivity of the carbon storage of potential vegetation to historical climate variability and CO2 in continental China

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The interest in the national levels of the terrestrial carbon sink and its spatial and temporal variability with the climate and CO2 concentrations has been increasing. How the climate and the increasing atmospheric CO2 concentrations in the last century affect the carbon storage in continental China was investigated in this study by using the Modified Sheffield Dynamic Global Vegetation Model (M-SDGVM). The estimates of the M-SDGVM indicated that during the past 100 years a combination of increasing CO2 with historical temperature and precipitation variability in continental China have caused the total vegetation carbon storage to increase by 2.04 Pg C, with 2.07 Pg C gained in the vegetation biomass but 0.03 Pg C lost from the organic soil carbon matter. The increasing CO2 concentration in the 20th century is primarily responsible for the increase of the total potential vegetation carbon. These factorial experiments show that temperature variability alone decreases the total carbon storage by 1.36 Pg C and precipitation variability alone causes a loss of 1.99 Pg C. The effect of the increasing CO2 concentration alone increased the total carbon storage in the potential vegetation of China by 3.22 Pg C over the past 100 years. With the changing of the climate, the CO2 fertilization on China’s ecosystems is the result of the enhanced net biome production (NBP), which is caused by a greater stimulation of the gross primary production (GPP) than the total soil-vegetation respiration. Our study also shows notable interannual and decadal variations in the net carbon exchange between the atmosphere and terrestrial ecosystems in China due to the historical climate variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batjes, N. H., G. Fisher, F. O. Nachtergaele, V. S. Stolbovoy, and H. T. van Velthuizen, 1997: Soil Data Derived from WISE for Uses in Regional and Global AEZ Studies (Version 1.0). FAO/IIASA/ISRIC, Laxenburg, 27pp.

    Google Scholar 

  • Beerling, D. J., and F. I. Woodward, 2001: Vegetation and the Terrestrial Carbon Cycle: Modelling the First 400 Million Years. Cambridge University Press, Cambridge, UK, 405pp.

    Google Scholar 

  • Bonan, G. B., S. Levis, L. Kergoat, and W. O. Keith, 2002a: Landscapes as patches of plant functional types: an integration concept for climate and ecosystem models. Global Biogeochemical Cycles, 16, 1021–1029.

    Article  Google Scholar 

  • Bonan, G. B., S. Levis, S. Sitch, M. Vertenstein, and K.W. Oleson, 2003: A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics. Global Change Biology, 9, 1543–1566.

    Article  Google Scholar 

  • Canadell, J., L. Pitelka, and J. S. Ingram, 1996: The effects of elevated CO2 on plant-soil carbon belowground: a summary and synthesis. Plant and Soil, 187, 391–400.

    Article  Google Scholar 

  • Cao, M. K., D. P. Stephen, K. R. Li, B. Tao, J. Small, and X. Shao, 2003: Response of terrestrial carbon uptake to climate interannual variability in China. Global Change Biology, 9, 536–546.

    Article  Google Scholar 

  • Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–187.

    Article  Google Scholar 

  • Cramer, W., and Coauthors, 2001: Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7(4), 357–373.

    Article  Google Scholar 

  • Dai, A., and I. Fung, 1993: Can climate variability contribute to the “missing” CO2 sink? Global Biogeochemical Cycles, 7, 599–609.

    Article  Google Scholar 

  • Dai, Y. J., and Coauthors, 2003: The common Land Model (CLM). Bull. Amer. Meteor. Soc., 84, 1013–1023.

    Article  Google Scholar 

  • Dan, L., J. J. Ji, and Y. P. Li, 2005: Climatic and biological simulations in a two-way coupled atmosphere-biosphere model (CABM). Global and Planetary Change, 47, 153–169.

    Article  Google Scholar 

  • Fang, J. Y., G. H. Liu, and S. L. Xu, 1996a: Carbon cycle of terrestrial ecosystems in China and its global significance. Hot Spots in Modern Ecology, Wang et al., Eds., China Science and Technology Press, Beijing, 24–250. (in Chinese)

    Google Scholar 

  • Fang, J. Y., G. H. Liu, and S. L. Xu, 1996b: Carbon pools in terrestrial ecosystems in China. Hot Spots in Moden Ecology, Wang et al., Eds., China Science and Technology Press, Beijing, 251–277. (in Chinese)

    Google Scholar 

  • Fang, J. Y., S. L. Piao, J. S. He, and W. H. Ma, 2003: Increasing net primary production in China from 1982 to 1999. Frontiers in Ecology and the Environment, 1(6), 293–297.

    Article  Google Scholar 

  • Foley, J. A., I. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A. Haxeltine, 1996: An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Change Biology, 4, 561–579.

    Article  Google Scholar 

  • Ge, Q., M. Zhao, and J. Zheng, 2000: Land use change of China during the 20th century. Acta Geographica Sinica, 55(6), 698–706.

    Google Scholar 

  • Grace, J., and Coauthors, 1995: Carbon dioxide uptake by undisturbed tropical forests in Southwest Amazonia, 1992 and 1993. Science, 270, 778–780.

    Article  Google Scholar 

  • Hanson, P. J., and Coauthors, 2004: Oak forest carbon and water simulations: Model comparisons and evaluations against independent data. Ecological Monographs, 74(3), 443–489.

    Article  Google Scholar 

  • Haxeltine, A., and I. C. Prentice, 1996: BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochemical Cycles, 10(4), 693–709.

    Article  Google Scholar 

  • Hou, H. Y., 1983: Vegetation map of China, 1:14000000. Annals of the Missouri Botanical Garden, 70(3), 509–548.

    Article  Google Scholar 

  • Huang, M., 2005: The simulations of water, heat and carbon cycle in the ecosystem of continental China. Ph. D. dissertation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China, 137pp. (in Chinese)

    Google Scholar 

  • IGBP Terrestrial Carbon Working Group, 1998: The terrestrial carbon cycle: implications for the Kyoto Protocol. Science, 280, 1393–1394.

    Article  Google Scholar 

  • Kichlighter, D. W., and Coauthors, 1999: A first-order analysis of the potential role of the potential role of CO2 fertilization to affect the global carbon budget: a comparison of four terrestrial biosphere models. Tellus, 51B, 343–366.

    Google Scholar 

  • Kirschbaum, M. U. F., and Coauthors, 1994: Modelling forest response to increasing CO2 concentration under nutrient-limited conditions. Plant, Cell and Environment, 17(10), 1081–1099.

    Article  Google Scholar 

  • Liu, H., W. Dong, C. Fu, and L. Shi, 2004: The longterm field exptEon aridification and the ordered human activity in semi-arid area at Tongyu, Northeast China. Climatic and Environmental Research, 9(2), 378–389. (in Chinese)

    Google Scholar 

  • Liu, J., H. Tian, M. Liu, D. Zhuang, J. Melillo, and Z. Zhang, 2005: China’s changing landscape during the 1990s: Large-scale land transformation estimated with satellite data. Geophys. Res. Lett., 32, L02405, doi: 10.1029/2004GL021649.

  • Long, S. P., E. A. Ainsworth, A. D. B. Leakey, J. Nosberger, and D. R. Ort, 2006: Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science, 312(5782), 1918–1921.

    Article  Google Scholar 

  • Lü, A., H. Tian, M. Liu, J. Liu, and J. M. Melillo, 2006: Spatial and temporal patterns of carbon emissions from forest fires in China from 1950 to 2000. J. Geophys. Res., 111, D05313, doi: 10.1029/2005JD006198.

  • Luo, T. X., 1996: Patterns of biological production and its mathematical models for main forest types of China. Ph. D. dissertation, Committee of Synthesis Investigation of Natural Resources. Chinese Academy of Sciences, Beijing, China, 211pp. (in Chinese)

    Google Scholar 

  • Mao, J. F., 2006: Improvements and applications of the Sheffield Dynamic Global Vegetation. Ph. D. dissertation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China, 149pp. (in Chinese)

    Google Scholar 

  • Mao, J. F., B. Wang, Y. Dai, F. I. Woodward, P. J. Hanson, and M. K. Lomas, 2007: Improvements of a dynamic global vegetation model and simulations of carbon and water at an up-land oak forest. Adv. Atmos. Phys., 24(2), 311–322.

    Article  Google Scholar 

  • McGuire, A. D., and Coauthors, 2001: Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochemical Cycles, 15, 183–206.

    Article  Google Scholar 

  • Melillo, J. M., I. Prentice, G. D. Farquhar, E. D. Schulze, and O. E. Sala, 1996: Terrestrial biotic responses to environmental change and feedbacks to climate. Climate Change: The Science of Climate Change, Houghton et al., Eds., 1995, Cambridge University Press, Cambridge, UK, 444–481.

    Google Scholar 

  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 25(6), 693–712.

    Article  Google Scholar 

  • Ni, J., 2001: Carbon storage in terrestrial ecosystems of China: estimates at different spatial resolutions and their responses to climate change. Climatic Change, 49, 339–358.

    Article  Google Scholar 

  • Ni, J., 2002: Effects of climate change on carbon storage in boreal forests of China: A local perspective. Climatic Change, 55(1–2), 61–75.

    Article  Google Scholar 

  • Olson, R. J., J.M. O. Scurlock, S.D. Prince, D. L. Zheng, and K. R. Johnson, 2001a: NPP multi-biome: Global primary production data initiative products. The Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, US. [Available on-line from http://www.daac.ornl.gov/].

    Google Scholar 

  • Parton, W. J., and Coauthors, 1993: Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles, 7, 785–809.

    Article  Google Scholar 

  • Prentice, I. C., M. T. Sykes, and W. Cramer, 1993: A simulation model for the transient effects of climate change on forest landscapes. Ecological Modelling, 65, 51–70.

    Article  Google Scholar 

  • Prince, S. D., R.J. Olson, G. Dedieu, G. Esser, and W. Cramer, 1995: Global primary production data initiative project description. IGBP-DIS Working Paper No. 12, International Geosphere-Biosphere Program-Data and Information System, Toulouse, 38pp.

    Google Scholar 

  • Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher, 1986: A simple biosphere model (SIB) for use within general circulation models. J. Atmos. Sci., 43, 505–531.

    Article  Google Scholar 

  • Shugart, H. H., 1998: Terrestrial Ecosystems in Changing Environments. Cambridge University Press, Cambridge, UK, 537pp.

    Google Scholar 

  • Sitch, S., and Coauthors, 2003: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9, 161–185.

    Article  Google Scholar 

  • Tao, B., 2003: The simulations of the net primary productivity and net ecosystem productivity in the ecosystem of continental China. Ph. D. dissertation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China, 157pp. (in Chinese)

    Google Scholar 

  • Tian, H., J. M. Mellillo, D. W. Kicklighter, A. D. McGuire, and J. V. K. Helfrich, 1999: The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States. Telles, 51B, 414–452.

    Article  Google Scholar 

  • Tian, H., J. M. Mellillo, D. W. Kicklighter, S. Pan, J. Liu, A. D. McGuire, and B. III. Moore, 2003: Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle. Global and Planetary Change, 37, 201–217, doi: 10.1016/S0921-8181(02)00205-9.

    Google Scholar 

  • Valentini, R., 2002: Fluxes of Carbon, Water and Energy of European Forest. Springer, Verlag, Heidelberg, 260pp.

    Google Scholar 

  • Wang, Y. P., B. Z. Houlton, and C. B. Field, 2007: A model of biogeochemical cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase production. Global Biogeochemical Cycles, 21, GB1018, doi:10.1029/2006GB002797.

  • Woodward, F. I., 2002: Potential impacts of global elevated CO2 concentrations on plants. Current Opinion in Plant Biology, 5, 207–211.

    Article  Google Scholar 

  • Woodward, F. I., and M. R. Lomas, 2004: Vegetation dynamics—Simulation responses to climatic change. Biological Reviews, 79, 643–670.

    Article  Google Scholar 

  • Woodward, F. I., T. M. Smith, and W. R. Emanuel, 1995: A global primary productivity and phytogeography model. Global Biogeochemical Cycles, 9, 471–490.

    Article  Google Scholar 

  • Woodward, F. I., M. R. Lomas, and S. E. Lee, 2001: Predicting the future productivity and distribution of global terrestrial vegetation. Terrestrial Global Productivity, Roy et al., Eds., Academic Press, San Diego, USA, 521–541.

    Chapter  Google Scholar 

  • Xiao, X., J. M. Melillo, D. W. Kicklighter, Y. Pan, A. D. McGuire, and J. Helfrich, 1998: Primary production of terrestrial ecosystems in China and its equilibrium responses to changes in climate and atmospheric CO2 concentration. Acta Phytoecologica Sinica, 22, 97–118.

    Google Scholar 

  • Yang, X., M. X. Wang, and Y. Huang, 2001: The climatic-induced net carbon sink by terrestrial biosphere over 1901–1995. Adv. Atmos. Sci., 18(6), 1192–1206.

    Article  Google Scholar 

  • Yu, Y., R. Yu, X. Zhang, and H. Liu, 2002: A flexible global coupled climate model. Adv. Atmos. Sci., 19, 169–190.

    Article  Google Scholar 

  • Zhou, G., and X. Zhang, 1996: Study on NPP of nature vegetation in China under climate change. Acta Phytoecologica Sinica, 20, 11–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiafu Mao  (毛嘉富).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, J., Wang, B. & Dai, Y. Sensitivity of the carbon storage of potential vegetation to historical climate variability and CO2 in continental China. Adv. Atmos. Sci. 26, 87–100 (2009). https://doi.org/10.1007/s00376-009-0087-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-009-0087-z

Key words

Navigation