Skip to main content
Log in

Cyclic variations of the swirling flow in a Diesel transparent engine

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

PIV data obtained in a transparent motored Diesel engine are presented and discussed in this paper. These data are obtained in severe thermodynamical conditions in the cylinder during the cycle and in the bowl at top dead center (TDC). Moreover, they are obtained at consecutive cycles. We first consider the flow in the middle of the compression phase. In particular, instantaneous velocity fields are analyzed and classified by computing circulation statistics. We show that the structure of the swirling motion is varying very significantly from “vortex type” to “annular type” from one cycle to another. In-cycle and inter-cycle statistics of these structure fluctuations are discussed. For example, we do not find any cycle-to-cycle correlation. The circulation data are then decomposed by using a proper orthogonal decomposition of the statistical set. The possibility of low order description of this kind of flow is considered. Finally, we study the in-bowl flow at the very end of the compression phase. The quantitative analysis based on circulation statistics show that we still detect strong structure fluctuations of the swirling flow at TDC and that the intensity of these fluctuations have not decreased after the squish phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Arcoumanis C, Whitelaw JH (1987) Fluid mechanics of internal combustion engines—a review. IMechE 201:57–74

    Article  Google Scholar 

  • Arcoumanis C, Bicen AF, Whitelaw JH (1983) Squish and swirl–squish interaction in motored model engines. J Fluids Eng 105:105–112

    Article  Google Scholar 

  • Arcoumanis C, Hadjiapostolou A, Whitelaw JH (1987) Swirl centre precession in engine flows. SAE-Paper 870370

  • Arcoumanis C, Enotiadis AC, Whitelaw JH (1991) Frequency analysis of tumble and swirl in motored engines. IMechE 205:177–184

    Article  Google Scholar 

  • Baby X (2000) Contribution à l’optimisation de l’aérodynamique interne dans un moteur à injection directe essence. Analyse de l’écoulement de tumble par vèlocimétrie par image de particules et simulation numérique 3D. PhD Thesis, I.N.P Toulouse

  • Batchelor G (1967) Introduction to fluid mechanics. Cambridge University Press, Cambridge

  • Benedict LH, Gould RD (1996) Towards better uncertainty estimates for turbulence statistics. Exp Fluids 22:129–136

    Article  Google Scholar 

  • Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25:539–575

    Article  MathSciNet  Google Scholar 

  • Bonnet JP, Delville J, Glauser MN (2002) Coherent structures in turbulent shear flows: the confluence of experimental and numerical approaches. In: Proceedings of ASME Fluids Engineering division summer meeting. Montreal, Quebec, July 14–18. FEDSM2002–31412

  • Bradshaw P (1969) The analogy between streamline curvature and buoyancy in turbulent shear flow. J Fluid Mech 36:177–191

    Article  MATH  Google Scholar 

  • Crnojevic C, Decool F, Florent P (1999) Swirl measurements in a motor cylinder. Exp Fluids 26:542–548

    Article  Google Scholar 

  • Deslandes W (2004) Structure et dispersion de l’aérodynamique interne des moteurs Diesel. Caractérisation par diagnostic optique. PhD Thesis, I.N.P. Toulouse

  • Enotiadis AC, Vafidis C, Whitelaw JH (1990). Interpretation of cyclic flow variations in motored internal combustion engines. Exp Fluids 10:77–86

    Article  Google Scholar 

  • Fansler TD, French DT (1987) Swirl, Squish and Turbulence in stratified charge engines: laser-velocimetry measurements and implications for combustion. SAE-Paper 870371

  • Fansler TD, French DT (1988) Cycle-resolved laser-velocimetry measurements in a reentrant bowl-in-piston-engine. SAE-Paper 880377

  • Gerber A, Melinand JP, Charnay G (1981) Kinematic properties in a cylinder of a motored reciprocating engine. IUTAM symposium unsteady turbulent shear flows, pp 46–54

  • Gerber A, Charnay G, Bidault M (1985) Comparison between steady and unsteady flows in cylinders of an internal combustion engine. SAE-Paper 850121

  • Graftieaux L, Michard M, Grosjean N (2001) Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas Sci Technol 12:1422–1429

    Article  Google Scholar 

  • Heywood JB (1988) Internal combustion engine fundamentals. McGraw-Hill, New York

    Google Scholar 

  • Hill PG, Zhang D (1994) The effects of swirl and tumble on combustion in spark-ignition engines. Prog Energy Combust Sci 20:373–429

    Article  Google Scholar 

  • Lecordier B (1997) Etude de l’interaction de la propagation d’une flamme prémélangée avec le champ aérodynamique par association de la tomographie laser et de la vélocimétrie par image de particules. PhD Thesis, Faculté des Sciences de l’Université de Rouen

  • Lumley JL (1967) The structure of inhomogeneous turbulence. In: Yaglom A, Tatarski V (eds) Proceedings atmospheric turbulence and radio-wave propagation. Nauka, Moskow, pp 166–178

  • Lumley JL (1999) Engines, an introduction. Cambridge University Press, Cambridge

    Google Scholar 

  • Payri F, Desantes JM, Pastor JV (1996). LDV Measurements of the flow inside the combustion chamber of a 4-valve D.I. diesel engine with axisymmetric piston bowls. Exp Fluids 22:118–128

    Article  Google Scholar 

  • Reuss DL, Adrian RJ, Landreth CC, French DT, Fansler TD (1989) Instantaneous planar measurements of velocity and large-scale vorticity and strain rate in an engine using particle image velocimetry. SAE technical papers 890616

  • Sirovich L (1987) Turbulence and the dynamics of coherent structures, part I: coherent structures. quarterly of applied mathematics 45–3:561–571

    MathSciNet  Google Scholar 

  • Tennekes H, Lumley JL (1972) A first course in turbulence. The MIT Press, Cambridge

    Google Scholar 

  • Towers DP, Towers CE (2004) Cyclic variability measurements of in-cylinder engine flows using high-speed particle image velocimetry. Meas Sci Technol 15:1917–1925

    Article  Google Scholar 

  • Westerweel J (1993) Digital particle image velocimetry, theory and application. Delft University Press, Delft

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Cosadia.

Appendix: list of symbols

Appendix: list of symbols

1.1 Experimental set-up

θ:

crank angle position

x :

axis between the two intake ports

z :

ascendant axis

S :

stroke

\(\bar{V}_{\rm p}\) :

mean piston velocity

V p :

instantaneous piston velocity

ω:

rotation rate of the engine

b :

cylinder bore

p :

depth of the bowl

d b :

diameter of the bowl

z p :

position of the piston crown

ρ:

air density inside the chamber

1.2 Measurements

Δ:

size of the PIV interrogation window

〈 〉:

phase-averaging operator

M :

number of velocity fields per phase

νt :

turbulent diffusivity

l :

integral length scale

δ:

characteristic length affected by the turbulent diffusion of momentum

t :

time taken by the piston to move half way

u′:

rms velocity

ρp :

particles density

d p :

particles median diameter

μa :

air viscosity inside the chamber

ω S :

equivalent air rotation rate

N S :

swirl number

L :

size of the energy containing eddies

τe :

engine time scale

τp :

particles time response

τS :

swirl time scale

τt :

turbulent turn-over time scale

τΔ :

turn-over time scale of eddies of the size Δ

S t :

Stokes number

1.3 Physical analysis

U :

instantaneous velocity component along x axis

V :

instantaneous velocity component along y axis

W :

instantaneous velocity component along z axis

U m :

highest velocity magnitude

W 0 :

solenoidal velocity component

W 1 :

velocity component induced by dilatation rate

\(\tilde{W}_{0}\) :

spatial average of W 0

α:

angle between W and U components

Γ:

circulation

Γ′:

centered circulation

A :

centered and reduced circulation

σ Γ :

standard deviation of the circulation

γ:

contour used in the computation of the circulation

R :

radius of the circle γ

β:

length of the radius of γ

I Γ :

fluctuation intensity of the circulation

\(\mathfrak{I}\) :

normalized correlation coefficient

i :

cycle number

\(\delta \mathfrak{I}\) :

statistical uncertainty of \(\mathfrak{I}\)

I N :

intercorrelation between cycles

N :

cycle shift

U n :

realization of the flow number (n) of the velocity vector field

u n :

fluctuating part number (n) of U n

\({\varvec{\Phi}}^{(k)}\) :

POD mode number (k)

λ(k) :

POD eigenvalue number (k)

a (k) n :

POD coefficient for the realization number (n) and the mode number (k)

(·, ·):

inner product associated with the square-norm

E :

total kinetic energy of the flow

m :

truncation order of the POD decomposition

σ1 :

standard deviation of the first POD coefficient

I 1 :

fluctuation intensity of the first POD coefficient

Γ n :

circulation of the realization of the flow number (n)

Γ n ′:

centered circulation number (n)

b (k) n :

normalized POD coefficients

P (k) :

correlation coefficient between normalized circulations and POD coefficients

R*:

normalized radius

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cosadia, I., Borée, J., Charnay, G. et al. Cyclic variations of the swirling flow in a Diesel transparent engine. Exp Fluids 41, 115–134 (2006). https://doi.org/10.1007/s00348-006-0163-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-006-0163-4

Keywords

Navigation