Skip to main content
Log in

Farbduplexsonographie der retrobulbären Gefäße und Hyperkapnie bei Normaldruckglaukom

Color Doppler sonography of retrobulbar vessels and hypercapnia in normal tension glaucoma

  • Originalien
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Eine veränderte Reaktivität des okulären Blutflusses auf einen gefäßerweiternden Stimulus kann Hinweis auf eine Störung der Blutflussregulation sein. In dieser Studie wurden retrobulbäre Blutfließgeschwindigkeiten bei Patienten mit Normaldruckglaukom (NDG) ohne Vasospasmen vor und während induzierter Hyperkapnie gemessen.

Material und Methoden

Es nahmen 16 Patienten mit NDG (Alter 58 ± 14 Jahre) und 16 Kontrollprobanden (Alter 50 ± 13 Jahre, p = 0,10) an dieser Studie teil. Blutfließgeschwindigkeiten [maximale systolische Geschwindigkeit („peak systolic velocity“, PSV) sowie enddiastolische Geschwindigkeit („end-diastolic velocity“, EDV)] und der Widerstandsindex („resistive index“, RI) der Aa. ophthalmica und centralis retinae wurden mithilfe der Farbduplexsonographie bestimmt. Die Blutfließgeschwindigkeiten wurden unter Raumluftbedingungen (Normokapnie) und unter Hyperkapnie [Erhöhung des endexspiratorischen Kohlenstoffdioxidpartialdrucks (pCO2) um 15%] gemessen. Blutdruck, Respirationsrate und Sauerstoffsättigung wurden simultan überwacht.

Ergebnisse

Unter Hyperkapnie zeigten die PSV und EDV (p = 0,044 resp. p = 0,037) der A. centralis retinae eine signifikant verminderte Reaktion bei den Patienten mit NDG im Vergleich zur Kontrollgruppe. Die Blutfließgeschwindigkeit der A. ophthalmica erhöhte sich signifikant unter Hyperkapnie (PSV: p = 0,039, EDV: p = 0,003). Es fand sich kein Unterschied zwischen beiden Gruppen (PSV: p = 0,65, EDV: p = 0,16). Der Einfluss der Hyperkapnie auf Blutdruck, Sauerstoffsättigung, Augeninnendruck und okulären Perfusionsdruck war nicht signifikant unterschiedlich in beiden Gruppen.

Schlussfolgerung

Die Reaktivität der Blutfließgeschwindigkeiten der A. centralis retinae ist bei Patienten mit NDG unter Hyperkapnie vermindert. Dies kann ein Hinweis auf eine gestörte Autoregulation bei diesen Patienten sein.

Abstract

Purpose

The aim of the study was to investigate retrobulbar flow velocities during hypercapnia in patients with normal tension glaucoma (NTG) without systemic vasospasm and jn controls.

Methods

A total of 16 NTG patients (mean age 58 ± 14 years) and 16 control subjects (mean age 50 ± 13 years, p = 0.10) were enrolled in this study. Flow velocities, peak systolic velocity (PSV), end-diastolic velocity (EDV) and resistive indices (RI) of the ophthalmic (OA) and central retinal arteries (CRA) were assessed using color Doppler imaging. Blood flow velocities were measured under normocapnic and hypercapnic conditions (increasing the end-tidal pCO2 by 15%). Blood pressure, ventilation rate and oxygen saturation were monitored simultaneously.

Results

During hypercapnia, velocity responses of the PSV (p = 0.044) and EDV (p = 0.037) of the CRA were significantly different in NTG patients and healthy controls, showing a greater increase of flow velocities in control subjects. Flow velocities of the OA increased significantly in both groups (PSV p = 0.039, EDV p = 0.003) during hypercapnia. Blood pressure, oxygen saturation and intraocular pressure changed similarly in both study groups with carbon dioxide provocation.

Conclusions

Velocity response to hypercapnia was reduced in the CRA of NTG patients compared to controls. This may indicate a faulty vasodilatory response in NTG patients without vasospastic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2

Literatur

  1. Arend O, Plange N, Sponsel WE, Remky A (2004) Pathogenetic aspects of the glaucomatous optic neuropathy: fluorescein angiographic findings in patients with primary open angle glaucoma. Brain Res Bull 62(6):517–524

    Article  PubMed  Google Scholar 

  2. Hayreh SS (1997) Factors influencing blood flow in the optic nerve head. J Glaucoma 6(6):412–425

    PubMed  CAS  Google Scholar 

  3. Plange N, Kaup M, Huber K et al (2006) Fluorescein filling defects of the optic nerve head in normal tension glaucoma, primary open-angle glaucoma, ocular hypertension and healthy controls. Ophthalmic Physiol Opt 26:26–32

    Article  PubMed  Google Scholar 

  4. Orgül S, Gugleta K, Flammer J (1999) Physiology of perfusion as it relates to the optic nerve head. Surv Ophthalmol 43:S17–S26

    Article  PubMed  Google Scholar 

  5. Anderson DR (1996) Glaucoma, capillaries and pericytes, 1. Blood flow regulation. Ophthalmologica 210:257–262

    Article  PubMed  CAS  Google Scholar 

  6. Riva CE, Sinclair SH, Grunwald JE (1981) Autoregulation in retinal circulation in response to decrease of perfusion pressure. Invest Ophthalmol Vis Sci 21:34–38

    PubMed  CAS  Google Scholar 

  7. Grunwald JE, Riva CE, Stone RA et al (1994) Retinal autoregulation in open-angle glaucoma. Ophthalmology 91:1690–1694

    Google Scholar 

  8. Pillunat LE, Stodtmeister R, Wilmanns I (1987) Pressure compliance of the optic nerve head in low tension glaucoma. Br J Ophthalmol 71:181–187

    Article  PubMed  CAS  Google Scholar 

  9. Harris A, Arend O, Kopecky K et al (1994) Physiological pertubation of ocular and cerebral blood flow as measured by scanning laser ophthalmoscopy and color Doppler imaging. Surv Ophthalmol 38(Suppl. May):S81–S86

    Google Scholar 

  10. Harris A, Anderson DR, Pillunat L et al (1996) Laser Doppler flowmetry measurement of changes in human optic nerve head blood flow in response to blood gas pertubations. J Glaucoma 5:258–265

    PubMed  CAS  Google Scholar 

  11. Arend O, Harris A, Martin BJ et al (1994) Retinal blood velocities during carbogen breathing using scanning laser ophthalmoscopy. Acta Ophthalmol 72:332–336

    CAS  Google Scholar 

  12. Geiser MH, Riva CE, Dorner GT et al (2000) Response of choroidal blood flow in the foveal region to hyperoxia and hyperoxia-hypercapnia. Curr Eye Res 21:669–676

    Article  PubMed  CAS  Google Scholar 

  13. Kergoat H, Faucher C (1999) Effects of oxygen and carbogen breathing on choroidal hemodynamics in humans. Invest Ophthalmol Vis Sci 40:2906–2911

    PubMed  CAS  Google Scholar 

  14. Roff EJ, Harris A, Chung HS et al (1999) Comprehensive assessment of retinal, choroidal and retrobulbar hemodynamics during blood gas pertubation. Graefes Arch Clin Exp Ophthalmol 237:984–990

    Article  PubMed  CAS  Google Scholar 

  15. Sponsel WE, DePaul KL, Zetlan SR (1992) Retinal hemodynamic effects of carbon dioxide, hyperoxia, and mild hypoxia. Invest Ophthalmol Vis Sci 33:1864–1869

    PubMed  CAS  Google Scholar 

  16. Hosking SL, Harris A, Chung HS et al (2004) Ocular haemodynamics responses to induced hypercapnia and hyperoxia in glaucoma. Br J Ophthalmol 88:406–411

    Article  PubMed  CAS  Google Scholar 

  17. Huber KK, Adams H, Remky A, Arend KO (2006) Retrobulbar haemodynamics and contrast sensitivity improvements after CO2 breathing. Acta Ophthalmol Scand 84:481–487

    Article  PubMed  Google Scholar 

  18. Harris A, Sergott RC, Spaeth GL et al (1994) Color Doppler analysis of ocular vessel blood velocity in normal-tension glaucoma. Am J Ophthalmol 118:642–649

    PubMed  CAS  Google Scholar 

  19. Flammer J, Pache M, Resink T (2001) Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye. Prog Ret Eye Res 20:319–349

    Article  CAS  Google Scholar 

  20. Greve EL et al (European Glaucoma Society) (2003) Terminology and guidelines for glaucoma. Editrice DOGMA S.r.l. Savona Italy

  21. Niwa Y, Yamamoto T, Harris A et al (2000) Relationship between the effect of carbon dioxide inhalation or nilvadipine on orbital blood flow in normal tension glaucoma. J Glaucoma 9:262–267

    Article  PubMed  CAS  Google Scholar 

  22. Harris A, Tippke S, Sievers C et al (1996) Acetazolamide and CO2: acute effects on cerebral and retrobulbar hemodynamics. J Glaucoma 5:39–45

    PubMed  CAS  Google Scholar 

  23. Spencer JA, Giussani DA, Moore PJ, Hanson MA (1991) In vitro validation of Doppler indices using blood and water. J Ultrasound Med 10:305–308

    PubMed  CAS  Google Scholar 

  24. Kaiser HJ, Schoetzau A, Stümpfig D, Flammer J (1997) Blood-flow velocities of the extraocular vessels in patients with high-tension and normal-tension primary open-angle glaucoma. Am J Ophthalmol 123:320–327

    PubMed  CAS  Google Scholar 

  25. Plange N, Remky A, Arend O (2003) Colour Doppler imaging and fluorescein filling defects of the optic disc in normal tension glaucoma. Br J Ophthalmol 87:731–736

    Article  PubMed  CAS  Google Scholar 

  26. Rankin SJ, Walman BE, Buckley AR, Drance SM (1995) Color Doppler imaging and spectral analysis of the optic nerve vasculature in glaucoma. Am J Ophthalmol 119:685–693

    PubMed  CAS  Google Scholar 

  27. Sines D, Harris A, Siesky B et al (2007) The response of retrobulbar vasculature to hypercapnia in primary open-angle glaucoma and ocular hypertension. Ophthalmic Res 39:76–80

    Article  PubMed  CAS  Google Scholar 

  28. Venkataraman ST, Hudson C, Rachmiel R et al (2010) Retinal arteriolar vascular reactivity in untreated and progressive primary open-angle glaucoma. Invest Ophthalmol Vis Sci 51:2043–2050

    Article  PubMed  Google Scholar 

  29. Kiely DG, Cargill RI, Lipworth BJ (1996) Effects of hypercapnia on hemodynamic, inotropic, lusitropic, and electrophysiologic indices in humans. Chest 109:1215–1221

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Plange.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plange, N., Bienert, M., Harris, A. et al. Farbduplexsonographie der retrobulbären Gefäße und Hyperkapnie bei Normaldruckglaukom. Ophthalmologe 109, 250–256 (2012). https://doi.org/10.1007/s00347-012-2524-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-012-2524-0

Schlüsselwörter

Keywords

Navigation