Skip to main content
Log in

Mid-infrared laser-absorption diagnostic for vapor-phase measurements in an evaporating n-decane aerosol

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A novel three-wavelength mid-infrared laser-based absorption/extinction diagnostic has been developed for simultaneous measurement of temperature and vapor-phase mole fraction in an evaporating hydrocarbon fuel aerosol (vapor and liquid droplets). The measurement technique was demonstrated for an n-decane aerosol with D 50∼3 μ m in steady and shock-heated flows with a measurement bandwidth of 125 kHz. Laser wavelengths were selected from FTIR measurements of the C–H stretching band of vapor and liquid n-decane near 3.4 μm (3000 cm −1), and from modeled light scattering from droplets. Measurements were made for vapor mole fractions below 2.3 percent with errors less than 10 percent, and simultaneous temperature measurements over the range 300 K<T<900 K were made with errors less than 3 percent. The measurement technique is designed to provide accurate values of temperature and vapor mole fraction in evaporating polydispersed aerosols with small mean diameters (D 50<10 μ m), where near-infrared laser-based scattering corrections are prone to error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, R.W. Dibble, In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser-absorption method: discussion of applicability with a homogeneous methane-air mixture. Meas. Sci. Technol. 14(8), 1350–1356 (2003)

    Article  ADS  Google Scholar 

  2. G.B. Rieker, H. Li, X. Liu, J.T.C. Liu, J.B. Jeffries, R.K. Hanson, M.G. Allen, S.D. Wehe, P.A. Mulhall, H.S. Kindle, A. Kakuho, K.R. Sholes, T. Matsuura, S. Takatani, Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor. Proc. Combust. Inst. 31(2), 3041–3049 (2007)

    Article  Google Scholar 

  3. A. Kakuho, K. Yamaguchi, Y. Hashizume, T. Urushihara, T. Itoh, E. Tomita, A study of air-fuel mixture formation in direct-injection SI engines. SAE paper 2004-01-1946

  4. H. Zhao, N. Ladommatos, Optical diagnostics for in-cylinder mixture formation measurements in IC engines. Prog. Energy Combust. Sci. 24(4), 297–336 (1998)

    Article  Google Scholar 

  5. F.P. Hindle, S.J. Carey, K. Ozanyan, D.E. Winterbone, E.E. Clough, H. McCann, Measurement of gaseous hydrocarbon distribution by a near-infrared absorption tomography system. J. Electron. Imaging 10(3), 593–600 (2001)

    Article  ADS  Google Scholar 

  6. M.G. Allen, Diode laser absorption sensors for gas-dynamic and combustion flows. Meas. Sci. Technol. 4(4), 545 (1998)

    Article  ADS  Google Scholar 

  7. R.K. Mongia, E. Tomita, F.K. Hsu, L. Talbot, R.W. Dibble, Use of an optical probe for time-resolved in situ measurement of local air-to-fuel ratio and extent of fuel mixing with applications to low NO x emissions in premixed gas turbines. Proc. Combust. Inst. 26(2), 2749–2755 (1996)

    Google Scholar 

  8. V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant. Proc. Combust. Inst. 28(1), 423–430 (2000)

    Article  Google Scholar 

  9. J.Y. Zhu, D. Dunnrankin, Using coherent anti-Stokes–Raman spectroscopy to probe the temperature-field of a combusting droplet stream. Appl. Opt. 30(19), 2672–2674 (1991)

    Article  ADS  Google Scholar 

  10. F. Beyrau, A. Bräuer, T. Seeger, A. Leipertz, Gas-phase temperature measurement in the vaporizing spray of a gasoline direct-injection injector by use of pure rotational coherent anti-Stokes Raman scattering. Opt. Lett. 29(3), 247–249 (2004)

    Article  ADS  Google Scholar 

  11. A.A. Rotunno, M. Winter, G.M. Dobbs, L.A. Melton, Direct calibration procedures for exciplex-based vapor/liquid visualization of fuel sprays. Combust. Sci. Technol. 71(4), 247–261 (1990)

    Article  Google Scholar 

  12. H. Kronemayer, K. Omerbegovic, C. Schulz, Quantification of the evaporative cooling in an ethanol spray created by a gasoline direct-injection system measured by multiline NO-LIF gas-temperature imaging. Appl. Opt. 46(34), 8322–8327 (2007)

    Article  ADS  Google Scholar 

  13. A.R. Chraplyvy, Nonintrusive measurements of vapor concentrations inside sprays. Appl. Opt. 20(15), 2620–2624 (1981)

    Article  ADS  Google Scholar 

  14. A.E. Klingbeil, J.B. Jeffries, R.K. Hanson, Tunable mid-IR laser absorption sensor for time-resolved hydrocarbon fuel measurements. Proc. Combust. Inst. 31(1), 807–815 (2007)

    Article  Google Scholar 

  15. J.A. Drallmeier, Hydrocarbon vapor measurements in fuel sprays: a simplification of the infrared extinction technique. Appl. Opt. 33(30), 7175–7179 (1994)

    Article  ADS  Google Scholar 

  16. W. Chen, J. Cousin, E. Poullet, J. Burie, D. Boucher, X. Gao, M.W. Sigrist, F.K. Tittel, Continuous-wave mid-infrared laser sources based on difference frequency generation. C. R. Phys. 8(10), 1129–1150 (2007)

    ADS  Google Scholar 

  17. D. Richter, P. Weibring, Ultra-high precision mid-IR spectrometer I: Design and analysis of an optical fiber pumped difference-frequency generation source. Appl. Phys. B, Lasers Opt. 82(3), 479–486 (2006)

    Article  ADS  Google Scholar 

  18. A.E. Klingbeil, J.M. Porter, J.B. Jeffries, R.K. Hanson, Two-wavelength mid-IR absorption diagnostic for simultaneous measurement of temperature and hydrocarbon fuel concentration. Proc. Combust. Inst. 32, 821–829 (2009)

    Article  Google Scholar 

  19. C.N. Banwell, E.M. McCash, Fundamentals of Molecular Spectroscopy (McGraw-Hill, New York, 1994)

    Google Scholar 

  20. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, Berlin, 1996)

    Google Scholar 

  21. C. Bohren, D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998)

    Book  Google Scholar 

  22. H.C.v.d. Hulst, Light Scattering by Small Particles (Dover, New York, 1981)

    Google Scholar 

  23. J. Kashdan, T. Hanson, E. Piper, D. Davidson, R. Hanson, A new facility for the study of shock wave induced combustion of liquid fuels, 5–8 January 2004

  24. M. Born, E. Wolf, Principles of Optics; Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon Press, Elmsford, 1959)

    MATH  Google Scholar 

  25. American Petroleum Institute, Catalog of Infrared Spectral Data; Numerical Index to the Catalog of Infrared Spectral Data (Chemical and Petroleum Research Laboratory, Carnegie Institute of Technology, Pittsburgh, 1959).

    Google Scholar 

  26. A. Tuntomo, C.L. Tien, S.H. Park, Optical constants of liquid hydrocarbon fuels. Combust. Sci. Technol. 84(1), 133–140 (1992)

    Article  Google Scholar 

  27. M.R. Anderson, J.A. Drallmeier, Determination of infrared optical constants for single component hydrocarbon fuels. Master’s thesis, Missouri University of Science and Technology, 2000

  28. J. Bertie, C. Keefe, R. Jones, Infrared intensities of liquids VIII. Accurate baseline correction of transmission spectra of liquids for computation of absolute intensities, and the 1036 cm −1 band of benzene as a potential intensity standard. Can. J. Chem. 69, 1609–1618 (1991)

    Article  Google Scholar 

  29. J.E. Bertie, C.D. Keefe, Comparison of infrared absorption intensities of benzene in the liquid and gas phases. J. Chem. Phys. 101(6), 4610–4616 (1994)

    Article  ADS  Google Scholar 

  30. J.P. Hawranek, P. Neelakantan, R.P. Young, R.N. Jones, The control of errors in IR spectrophotometry–III. Transmission measurements using thin cells. Spectrochim. Acta, Part A, Mol. Spectrosc. 32(1), 75–84 (1976)

    Article  ADS  Google Scholar 

  31. J.P. Hawranek, P. Neelakantan, R.P. Young, R.N. Jones, The control of errors in IR spectrophotometry—IV. Corrections for dispersion distortion and the evaluation of both optical constants. Spectrochim. Acta, Part A, Mol. Spectrosc. 32(1), 85–98 (1976)

    Article  ADS  Google Scholar 

  32. J.M. Porter, J.B. Jeffries, R.K. Hanson, Mid-infrared absorption measurements of liquid hydrocarbon fuels near 3.4 μm. J. Quant. Spectrosc. Radiat. Transf. 1(1) (2009). doi:10.1016/j.jqsrt.2009.05.017

  33. D.C. Keefe, Computer programs for the determination of optical constants from transmission spectra and the study of absolute absorption intensities. J. Mol. Struct. 641(2–3), 165–173 (2002)

    Article  ADS  Google Scholar 

  34. T.A. Germer, Scatmech: Polarized light scattering c++ class library, 2008

  35. A.E. Klingbeil, J.B. Jeffries, R.K. Hanson, Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons. J. Quant. Spectrosc. Radiat. Transf. 107(3), 407–420 (2007)

    Article  ADS  Google Scholar 

  36. S.W. Sharpe, T.J. Johnson, R.L. Sams, P.M. Chu, G.C. Rhoderick, P.A. Johnson, Gas-phase databases for quantitative infrared spectroscopy. Appl. Spectrosc. 58(12), 1452–1461 (2004)

    Article  ADS  Google Scholar 

  37. D.F. Davidson, D.R. Haylett, R.K. Hanson, Development of an aerosol shock tube for kinetic studies of low-vapor-pressure fuels. Combust. Flame 155(1–2), 108–117 (2008)

    Article  Google Scholar 

  38. A. Guha, Jump conditions across normal shock waves in pure vapour-droplet flows. J. Fluid Mech. 241, 349–369 (1992)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Porter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porter, J.M., Jeffries, J.B. & Hanson, R.K. Mid-infrared laser-absorption diagnostic for vapor-phase measurements in an evaporating n-decane aerosol. Appl. Phys. B 97, 215–225 (2009). https://doi.org/10.1007/s00340-009-3658-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3658-x

PACS

Navigation