Skip to main content
Log in

Effect of crosslinkers on size and temperature sensitivity of poly(N-isopropylacrylamide) microgels

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, we study the effect of crosslinkers on the size and swelling properties of temperature sensitive N-isopropylacrylamide (NIPAAm) microgels produced by dispersion polymerization. The crosslinkers studied were N,N′-methylenebisacrylamide (MBA), ethylene glycol dimethacrylate (EGDMA) an 3,9-divinyl-2,4,8,10-tetra-oxaspiro[5.5] undecane (DVA). The type of crosslinker had a major impact on the size and swelling behavior, although the proportion of crosslinker used in each case was low (maximum 5 mol%). The effect can be related to the hydrophilic/hydrophobic characteristics of the crosslinkers. DVA produces smaller hydrogels with reduced swelling ratio, MBA produces bigger microgels with higher swelling ratio, while EGDMA results in an intermediate behavior. With increasing amount of crosslinker used in the synthesis, the extent of the swelling ratio decreases for DVA and EGDMA crosslinked microgels, while increases for MBA crosslinked microgels. There is also a slight effect on the critical transition temperature (T c) of the microgels from 30 °C (DVA) to 34 °C (MBA) as observed in copolymers of NIPAAm with hydrophilic or hydrophobic comonomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

APS:

Ammonium persulfate

D h :

Hydrodynamic diameter

DLS:

Dynamic light scattering

DVA:

3,9-Divinyl-2,4,8,10-tetra-oxaspiro[5.5] undecane

EDGMA:

Ethylene glycol dimethacrylate

HEMA:

2-Hydroxyethylmethacrylate

LCST:

Lower critical solution temperature

MBA:

N,N′-methylenebisacrylamide

NIPAAm:

N-isopropylacrylamide

PDI:

Polydispersity index

PNIPAAm:

Poly(N-isopropylacrylamide)

T c :

Critical transition temperature

References

  1. Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33:448–477

    Article  CAS  Google Scholar 

  2. Ballauff M, Lu Y (2007) “Smart” nanoparticles: preparation, characterization and applications. Polymer 48:1815–1823

    Article  CAS  Google Scholar 

  3. Lin CL, Chiu WY, Lee CF (2005) Thermal/pH-sensitive core–shell copolymer latex and its potential for targeting drug carrier application. Polymer 46:10092–10101

    Article  CAS  Google Scholar 

  4. Leobandung W, Ichikawa H, Fukumori Y, Peppas NA (2002) Preparation of stable insulin-loaded nanospheres of poly(ethylene glycol) macromers and N-isopropyl acrylamide. J Controlled Release 80:357–363

    Article  CAS  Google Scholar 

  5. Leobandung W, Ichikawa H, Fukumori Y, Peppas NA (2003) Monodisperse nanoparticles of poly(ethylene glycol) macromers and N-isopropyl acrylamide for biomedical applications. J Appl Polym Sci 87:1678–1684

    Article  CAS  Google Scholar 

  6. Licea-Claverie A, Alvarez-Sanchez J, Picos-Corrales LA, Obeso-Vera C, Flores MC, Cornejo-Bravo JM, Hawker CJ, Frank CW (2009) The use of the RAFT-technique for the preparation of temperature/pH sensitive polymers in different architectures. Macromol Symp 283–284:56–66

    Article  Google Scholar 

  7. Hoare T, Pelton R (2008) Charge-switching, amphoteric glucose-responsive microgels with physiological swelling activity. Biomacromolecules 9:733–740

    Article  CAS  Google Scholar 

  8. Pelton R, Chibante P (1986) Preparation of aqueous lattices with N-isopropylacrylamide. Colloids Surf 20:247–256

    Article  CAS  Google Scholar 

  9. Chen S, Jiang L, Dan Y (2011) Preparation and thermal response behavior of poly(N-isopropylacrylamide-co-acrylic acid) microgels via soap-free emulsion polymerization based on AIBN initiator. J Appl Polym Sci 121:3322–3331

    Article  CAS  Google Scholar 

  10. Karg M, Pastoriza-Santos I, Rodríguez-Gonzalez B, Von Klitzing R, Wellert S, Hellweg T (2008) Temperature, pH, and ionic strength induced changes of the swelling behavior of PNIPAM–poly(allylacetic acid) copolymer microgels. Langmuir 24:6300–6306

    Article  CAS  Google Scholar 

  11. Hoare T, Pelton R (2004) pH and temperature responsive microgels functionalized with vinylacetic acid. Macromolecules 37:2544–2550

    Article  CAS  Google Scholar 

  12. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  13. Pavlyuchenko VN, Ivanchev SS (2009) Composite polymer hydrogels. Polym Sci Ser A 51:743–760

    Article  Google Scholar 

  14. Oh JS, Kim JM, Lee KJ, Bae YCh (1999) Swelling behavior of N-isopropylacrylamide gel particles with degradable crosslinker. Eur Polym J 35:621–630

    Article  CAS  Google Scholar 

  15. Arndt KF, Müller G (1996) Polymercharakterisierung. Carl Hanser Verlag, München

    Google Scholar 

  16. Gaumet M, Vargas A, Gurny R, Delie F (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 69:1–9

    Article  CAS  Google Scholar 

  17. Zhou S, Chu B (1998) Synthesis and volume phase transition of poly(methacrylic acid-co-N-isopropylacrylamide) micregel particles in water. J Phys Chem B 102:1364–1371

    Article  CAS  Google Scholar 

  18. Arshady R (1992) Suspension, emulsion, and dispersion polymerization: a methodological survey. Colloid Polym Sci 270:717–732

    Article  CAS  Google Scholar 

  19. Imaz A, Forcada J (2008) N-vinylcaprolactam-based microgels: effect of the concentration and type of cross-linker. J Polym Sci 46:2766–2775

    CAS  Google Scholar 

  20. http://www.ecem.com/sales/data/edgma.htm. Accessed 30 March 2012

  21. Nita LE, Chiriac AP, Nicor MT (2011) Upon the emulsion polymerization of 2-hydroxyethyl methacrylate with 3,9-divynil-2,4,8,10-tetraoxaspiro[5.5]-undecane. Colloid Surf A 381:111–117

    Article  CAS  Google Scholar 

  22. Gil ES, Hudson SM (2004) Stimuli responsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222

    Article  CAS  Google Scholar 

  23. Rzaev ZMO, Dincer S, Piskin E (2007) Functional copolymers of N-isopropylacrylamide for bioengineering applications. Prog Polym Sci 32:534–595

    Article  CAS  Google Scholar 

  24. Licea-Claverie A, Cornejo-Bravo JM, Salgado-Rodriguez R, Santos-Rosas DR, Lugo-Medina E, Ramos-Ibarra MA (2007) Temperature and pH-sensitive polymers with hydrophobic spacers for the controlled delivery of drugs. Macromol Symp 254:292–299

    CAS  Google Scholar 

Download references

Acknowledgments

Work supported by SEP-CONACYT (CB 2010-1-157173). The authors thank M. S. Pedro Navarro-Vega from Centro de Graduados e Investigación, Instituto Tecnológico de Tijuana for AFM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Cornejo-Bravo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obeso-Vera, C., Cornejo-Bravo, J.M., Serrano-Medina, A. et al. Effect of crosslinkers on size and temperature sensitivity of poly(N-isopropylacrylamide) microgels. Polym. Bull. 70, 653–664 (2013). https://doi.org/10.1007/s00289-012-0832-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0832-9

Keywords

Navigation