Skip to main content

Advertisement

Log in

The role of cordycepin in cancer treatment via induction or inhibition of apoptosis: implication of polyadenylation in a cell type specific manner

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Most anticancer drugs show their antiproliferative and cytotoxic activity via induction of apoptosis. In the present study we assessed the implication and role of cordycepin, a polyadenylation-specific inhibitor and a well-known chemotherapeutic drug, in apoptosis, induced by the anticancer drug etoposide.

Methods

For this purpose, a variety of leukemia and lymphoma cell lines (U937, K562, HL-60, Daudi, Molt-4) were treated with the anticancer drugs etoposide and/or cordycepin and assessed for poly(A) polymerase (PAP) activity and isoforms by the highly sensitive PAP activity assay and western blotting, respectively. Induction of apoptosis was determined by endonucleosomal DNA cleavage, DAPI staining, caspase-6 activity assay and ΔΨm reduction, whereas cytotoxicity and cell cycle status were assessed by Trypan blue staining, MTT assay and flow cytometry.

Results and conclusions

The results showed that PAP changes in all cell lines, in response to apoptosis induced by etoposide, in many cases even prior to hallmarks of apoptosis (endonucleosomal cleavage of DNA, ΔΨm reduction). A further elucidation to this apoptosis–polyadenylation correlation was added, by cell treatment with cordycepin, resulting in either suppression (U937, K562) or induction (HL-60) of the apoptotic process, according to the cell type. However, inhibition of polyadenylation did not influence the cell lines Daudi and Molt-4 used, where alternative apoptotic pathways are induced through cleavage of DNA into high molecular weight fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Funk JO, Walczak H, Voigtlander C, Berchtold S, Baumeister T, Rauch P, Rossner S, Steinkasserer A, Schuler G, Lutz MB (2000) Cutting edge: resistance to apoptosis and continuous proliferation of dendritic cells deficient for TNF receptor-1. J Immunol 165:4792–4796

    PubMed  CAS  Google Scholar 

  2. Foster JR (2000) Cell death and cell proliferation in the control of normal and neoplastic tissue growth. Toxicol Pathol 28:441–446

    PubMed  CAS  Google Scholar 

  3. Solary E, Droin N, Bettaieb A, Corcos L, Dimanche-Boitrel MT, Garrido C (2000) Positive and negative regulation of apoptotic pathways by cytotoxic agents in hematological malignancies. Leukemia 14:1833–1849

    Article  PubMed  CAS  Google Scholar 

  4. Malaguarnera L (2004) Implications of apoptosis regulators in tumorigenesis. Cancer Metastasis Rev 23:367–387

    Article  PubMed  CAS  Google Scholar 

  5. Schulze-Bergkamen H, Krammer PH (2004) Apoptosis in cancer-implications for therapy. Semin Oncol 31:90–119

    Article  PubMed  CAS  Google Scholar 

  6. Blagosklonny MV (2004) Prospective strategies to enforce selectively cell death in cancer cells. Oncogene 23:2967–2975

    Article  PubMed  CAS  Google Scholar 

  7. Debatin KM, Krammer PH (2004) Death receptors in chemotherapy and cancer. Oncogene 23:2950–2966

    Article  PubMed  CAS  Google Scholar 

  8. Costantini P, Jacotot E, Decaudin D, Kroemer G (2000) Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst 92:1042–1053

    Article  PubMed  CAS  Google Scholar 

  9. Hu W, Kavanagh JJ (2003) Anticancer therapy targeting the apoptotic pathway. Lancet Oncol 4:721–729

    Article  PubMed  CAS  Google Scholar 

  10. Cummings J, Smyth JF (1993) DNA topoisomerase I and II as targets for rational design of new anticancer drugs. Ann Oncol 4:533–543

    PubMed  CAS  Google Scholar 

  11. Zhao J, Hyman L, Moore C (1999) Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 63:405–445

    PubMed  CAS  Google Scholar 

  12. Wahle E, Ruegsegger U (1999) 3′-end processing of pre-mRNA in eukaryotes. FEMS Microbiol Rev 23:277–295

    PubMed  CAS  Google Scholar 

  13. Raabe T, Bollum FJ, Manley JL (1991) Primary structure and expression of bovine poly(A) polymerase. Nature 353:229–234

    Article  PubMed  CAS  Google Scholar 

  14. Wahle E, Martin G, Schiltz E, Keller W (1991) Isolation and expression of cDNA clones encoding mammalian poly(A) polymerase. EMBO J 10:4251–4257

    PubMed  CAS  Google Scholar 

  15. Zhao W, Manley JL (1996) Complex alternative RNA processing generates an unexpected diversity of poly(A) polymerase isoforms. Mol Cell Biol 16:2378–2386

    PubMed  CAS  Google Scholar 

  16. Kashiwabara S, Zhuang T, Yamagata K, Noguchi J, Fukamizu A, Baba T (2000) Identification of a novel isoform of poly(A) polymerase, TPAP, specifically present in the cytoplasm of spermatogenic cells. Dev Biol 228:106–115

    Article  PubMed  CAS  Google Scholar 

  17. Topalian SL, Kaneko S, Gonzales MI, Bond GL, Ward Y, Manley JL (2001) Identification and functional characterization of neo-poly(A) polymerase, an RNA processing enzyme overexpressed in human tumors. Mol Cell Biol 21:5614–5623

    Article  PubMed  CAS  Google Scholar 

  18. Kyriakopoulou CB, Nordvarg H, Virtanen A (2001) A novel nuclear human poly(A) polymerase (PAP), PAP gamma. J Biol Chem 276:33504–33511

    Article  PubMed  CAS  Google Scholar 

  19. Scorilas A (2002) Polyadenylate polymerase (PAP) and 3′ end pre-mRNA processing: function, assays, and association with disease. Crit Rev Clin Lab Sci J39:193–224

    Article  Google Scholar 

  20. Colgan DF, Murthy KG, Prives C, Manley JL (1996) Cell-cycle related regulation of poly(A) polymerase by phosphorylation. Nature 384:282–285

    Article  PubMed  CAS  Google Scholar 

  21. Colgan DF, Murthy KG, Zhao W, Prives C, Manley JL (1998) Inhibition of poly(A) polymerase requires p34cdc2/cyclin B phosphorylation of multiple consensus and non-consensus sites. EMBO J 17:1053–1062

    Article  PubMed  CAS  Google Scholar 

  22. Mouland AJ, Coady M, Yao XJ, Cohen EA (2002) Hypophosphorylation of poly(A) polymerase and increased polyadenylation activity are associated with human immunodeficiency virus type 1 Vpr expression. Virology 292:321–330

    Article  PubMed  CAS  Google Scholar 

  23. Zhao W, Manley JL (1998) Deregulation of poly(A) polymerase interferes with cell growth. Mol Cell Biol 18:5010–5020

    PubMed  CAS  Google Scholar 

  24. Kazazoglou T, Tsiapalis CM, Havredaki M (1987) Polyadenylate polymerase activity in stationary and growing cell cultures. Exp Cell Biol 55:164–172

    PubMed  CAS  Google Scholar 

  25. Ballantyne S, Bilger A, Astrom J, Virtanen A, Wickens M (1995) Poly(A) polymerases in the nucleus and cytoplasm of frog oocytes: dynamic changes during oocyte maturation and early development. RNA 1:64–78

    PubMed  CAS  Google Scholar 

  26. Perez S, Trangas T, Kokkinopoulos D, Tsiapalis CM, Papamichail M (1987) Polyadenylic acid metabolizing enzyme levels during induction of differentiation in a human leukemia T-cell line with phorbol ester. J Natl Cancer Inst 78:407–411

    PubMed  CAS  Google Scholar 

  27. Trangas T, Courtis N, Pangalis GA, Cosmides HV, Ioannides C, Papamichail M, Tsiapalis CM (1984) Polyadenylic acid polymerase activity in normal and leukemic human leukocytes. Cancer Res 44:3691–3697

    PubMed  CAS  Google Scholar 

  28. Pangalis GA, Trangas T, Roussou PA, Tsiapalis CM (1985) Poly(A)-polymerase activity in chronic lymphocytic leukemia of the B cell type. Acta Haematol 74:31–34

    Article  PubMed  CAS  Google Scholar 

  29. Sasaki R, Minowada J, Bollum FJ, Miura Y (1990) Polyadenylic acid polymerase activity in chronic myelogenous leukemia. Leuk Res 14:273–278

    Article  PubMed  CAS  Google Scholar 

  30. Scorilas A, Courtis N, Yotis J, Talieri M, Michailakis M, Trangas T (1998) Poly(A) polymerase activity levels in breast tumour cytosols. J Exp Clin Cancer Res 17:511–518

    PubMed  CAS  Google Scholar 

  31. Scorilas A, Talieri M, Ardavanis A, Courtis N, Yotis J, Dimitriadis E, Tsiapalis C, Trangas T (2000) Polyadenylate polymerase enzymatic activity in mammary tumor cytosols: a new independent prognostic marker in primary breast cancer. Cancer Res 60:5427–5433

    PubMed  CAS  Google Scholar 

  32. Bodeker H, Vasseur S, Dusetti NJ, Dagorn JC, Iovanna JL (1998) PAP gene transcription induced by cycloheximide in AR4-2J cells involves ADP-ribosylation. Biochem Biophys Res Commun 251:710–713

    Article  PubMed  CAS  Google Scholar 

  33. Atabasides H, Tsiapalis CM, Havredaki M (1998) Dephosphorylation, proteolysis and reduced activity of poly(A) polymerase associated with U937 cell apoptosis. Exp Cell Res 244:433–440

    Article  PubMed  CAS  Google Scholar 

  34. Balatsos NA, Havredaki M, Tsiapalis CM (2000a) Anticancer drug action on poly(A) polymerase activity and isoforms during HeLa and WISH cell apoptosis. Int J Biol Markers 15:171–178

    PubMed  CAS  Google Scholar 

  35. Balatsos NA, Havredaki M, Tsiapalis CM (2000b) Early 5-fluorouracil-induced changes of poly(A) polymerase in HeLa and WISH cells. Int J Biol Markers 15:294–299

    PubMed  CAS  Google Scholar 

  36. Balatsos NA, Lallas G, Havredaki M, Tsiapalis CM (2001) Drug action on poly(A) polymerase activity and isoforms during U937 cell apoptosis. J Exp Clin Cancer Res 20:63–69

    PubMed  CAS  Google Scholar 

  37. Thomadaki E, Havredaki M, Tsiapalis CM (2004) PAP modulations in Daudi cells and Molt-3 cells treated with etoposide are mutually associated with morphological evidence of apoptosis. Int J Biol Markers 19:203–212

    PubMed  CAS  Google Scholar 

  38. Thomadaki H, Tsiapalis CM, Scorilas A (2005) Polyadenylate polymerase modulations in human epithelioid cervix and breast cancer cell lines, treated with etoposide or cordycepin, follow cell cycle rather than apoptosis induction. Biol Chem 386:471–480

    Article  PubMed  CAS  Google Scholar 

  39. Casciola-Rosen LA, Miller DK, Anhalt GJ, Rosen A (1994) Specific cleavage of the 70-kDa protein component of the U1 small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell death. J Biol Chem 269:30757–30760

    PubMed  CAS  Google Scholar 

  40. Marissen WE, Triyoso D, Younan P, Lloyd RE (2004) Degradation of poly(A)-binding protein in apoptotic cells and linkage to translation regulation. Apoptosis 9:67–75

    Article  PubMed  CAS  Google Scholar 

  41. Saitoch S, Chabes A, McDonald WH, Thelander L, Yates JR, Russell P (2002) Cid13 is a cytoplasmic poly(A) polymerase that regulates ribonucleotide reductase mRNA. Cell 109:563–573

    Article  Google Scholar 

  42. Kashiwabara S, Noguchi J, Zhuang T, Ohmura K, Honda A, Sugiura S, Miyamoto K, Takahashi S, Inoue K, Ogura A, Baba T (2002) Regulation of spermatogenesis by testis-specific, cytoplasmic poly(A) polymerase TPAP. Science 298:1999–2002

    Article  PubMed  CAS  Google Scholar 

  43. Zhuang T, Kashiwabara S, Noguchi J, Baba T (2004) Transgenic expression of testis-specific poly(A) polymerase TPAP in wild-type and TPAP-deficient mice. J Reprod Dev 50:207–213

    Article  PubMed  CAS  Google Scholar 

  44. Schiavone N, Rosini P, Quattrone A, Donnini M, Lapucci A, Citti L, Bevilacqua A, Nicolin A, Capaccioli S (2000) A conserved AU-rich element in the 3′ untranslated region of bcl-2 mRNA is endowed with a destabilizing function that is involved in bcl-2 down-regulation during apoptosis. FASEB J 14:174–184

    PubMed  CAS  Google Scholar 

  45. Kim H, You S, Foster LK, Farris J, Foster DN (2001) The rapid destabilization of p53 mRNA in immortal chicken embryo fibroblast cells. Oncogene 20:5118–5123

    Article  PubMed  CAS  Google Scholar 

  46. Barry MA, Behnke CA, Eastman A (1990) Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem Pharmacol 40:2353–2362

    Article  PubMed  CAS  Google Scholar 

  47. Lazebnik YA, Cole S, Cooke CA, Nelson WG, Earnshaw WC (1993) Nuclear events of apoptosis in cell-free mitotic extracts: a model system for analysis of the active phase of apoptosis. J Cell Biol 123:7–22

    Article  PubMed  CAS  Google Scholar 

  48. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  49. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  50. Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulphate—polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112:195–203

    Article  PubMed  CAS  Google Scholar 

  51. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  52. Bollum FJ, Chang LM, Tsiapalis CM, Dorson JW (1974) Nucleotide polymerizing enzymes from calf thymus gland. In: Colowick SP, Kaplan NO (eds) Methods Enzymol. Academic Press, New York, vol 29, p 70

  53. Didelot C, Mirjolet JF, Barberi-Heyob M, Ramacci C, Merlin JL (2002) Radiation could induce p53-independent and cell cycle-unrelated apoptosis in 5-fluorouracil radiosensitized head and neck carcinoma cells. Can J Physiol Pharmacol 80:638–643

    Article  PubMed  CAS  Google Scholar 

  54. Chou RH, Huang H (2002) Restoration of p53 tumor suppressor pathway in human cervical carcinoma cells by sodium arsenite. Biochem Biophys Res Commun 293:298–306

    Article  PubMed  CAS  Google Scholar 

  55. Polla BS, Kantengwa S, Francois D, Salvioli S, Franceschi C, Marsac C, Cossarizza A (1996) Mitochondria are selective targets for the protective effects of heat shock against oxidative injury. Proc Natl Acad Sci USA 93:6458–6463

    Article  PubMed  CAS  Google Scholar 

  56. Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A (1997) JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess Δψm changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett 411:77–82

    Article  PubMed  CAS  Google Scholar 

  57. Komatsu N, Oda T, Muramatsu T (1998) Involvement of both caspase-like proteases and serine proteases in apoptotic cell death induced by ricin, modeccin, diphtheria toxin and pseudomonas toxin. J Biochem 124:1038–1044

    PubMed  CAS  Google Scholar 

  58. Koc Y, Urbano AG, Sweeney EB, McCaffrey R (1996) Induction of apoptosis by cordycepin in ADA-inhibited TdT-positive leukemia cells. Leukemia 10:1019–1024

    PubMed  CAS  Google Scholar 

  59. Müller WE, Seibert G, Beyer R, Breter HJ, Maidhof A, Zahn RK (1977) Effect of cordycepin on nucleic acid metabolism in L5178Y cells and on nucleic acid-synthesizing enzyme systems. Cancer Res 37:3824–3833

    PubMed  Google Scholar 

  60. Kodama EN, McCaffrey RP, Yusa K, Mitsuya H (2000) Antileukemic activity and mechanism of action of cordycepin against terminal deoxynucleotidyl transferase-positive (TdT+) leukemic cells. Biochem Pharmacol 59:273–281

    Article  PubMed  CAS  Google Scholar 

  61. Niitsu N, Umeda M, Honma Y (2000) Myeloid and monocytoid leukemia cells have different sensitivity to differentiation-inducing activity of deoxyadenosine analogs. Leuk Res 24:1–9

    Article  PubMed  CAS  Google Scholar 

  62. Niitsu N, Yamaguchi Y, Umeda M, Honma Y (1998) Human monocytoid leukemia cells are highly sensitive to apoptosis induced by 2′-deoxycoformycin and 2′-deoxyadenosine: association with dATP-dependent activation of caspase-3. Blood 92:3368–3375

    PubMed  CAS  Google Scholar 

  63. Chen LS, Sheppard TL (2004) Chain termination and inhibition of Saccharomyces cerevisiae poly(A) polymerase by C-8-modified ATP analogs. J Biol Chem 279:40405–40411

    Article  PubMed  CAS  Google Scholar 

  64. Kuznetsov DA, Musajev NI (1990) The molecular mode of brain mRNA processing damage followed by the suppression of post-transciptional poly(A) synthesis with cordycepin. Int J Neurosci 51:53–67

    PubMed  CAS  Google Scholar 

  65. Thomadaki H, Scorilas A (2006) BCL2 family of apoptosis-related genes: functions and clinical implications in cancer. Crit Rev Clin Lab Sci 43:1–67

    Article  PubMed  CAS  Google Scholar 

  66. Thomadaki H, Talieri M, Scorilas A (2006) Prognostic value of the apoptosis related genes BCL2 and BCL2L12 in breast cancer. Cancer Lett (Epub ahead of print)

  67. Floros KV, Thomadaki H, Lallas G, Katsaros N, Talieri M, Scorilas A (2003) Cisplatin-induced apoptosis in HL-60 human promyelocytic leukemia cells: differential expression of BCL2 and novel apoptosis-related gene BCL2L12. Ann N Y Acad Sci 1010:153–158

    Article  PubMed  CAS  Google Scholar 

  68. Floros KV, Thomadaki H, Katsaros N, Talieri M, Scorilas A (2004) mRNA expression analysis of a variety of apoptosis-related genes, including the novel gene of the BCL2-family, BCL2L12, in HL-60 leukemia cells after treatment with carboplatin and doxorubicin. Biol Chem 385:1099–1103

    Article  PubMed  CAS  Google Scholar 

  69. Thomadaki H, Talieri M, Scorilas A (2006) Treatment of MCF-7 cells with taxol and etoposide induces distinct alterations in the expression of apoptosis-related genes BCL2, BCL2L12, BAX, CASPASE-9 and FAS. Biol Chem 387:1081–1086

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by EU Grant ERBFM RXCT-960096 to C.M.T. We thank Dr. G. Martin from Dr Keller’s Laboratory, Biozentrum, Basel University, Switzerland for the generous gift of PAP polyclonal antiserum, as well as Dr. A. Eastman for helpful advice and the protocol of DNA laddering. We also thank Dr. D. Kletsas and Dr. H. Pratsinis for technical advices, helpful discussions and the use of the flow cytometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Scorilas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomadaki, H., Scorilas, A., Tsiapalis, C.M. et al. The role of cordycepin in cancer treatment via induction or inhibition of apoptosis: implication of polyadenylation in a cell type specific manner. Cancer Chemother Pharmacol 61, 251–265 (2008). https://doi.org/10.1007/s00280-007-0467-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-007-0467-y

Keywords

Navigation