Skip to main content
Log in

The evolution of simultaneous progressive provisioning revisited: extending the model to overlapping generations

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

“Simultaneous progressive provisioners” feed their offspring gradually as they develop—and typically feed more than one offspring simultaneously (SIM) at a time. In contrast, “sequential mass provisioners” supply offspring one after another (SEQ). Utilizing individual-based simulations, Field (Nature 404:869–871, 2005) compared the lifetime reproductive success of these strategies in different scenarios. Accordingly, SEQ should evolve in the majority of cases—SIM only has an evolutionary benefit if offspring depend on their mothers’ protection until adulthood even past the provisioning period. However, this is only one potential explanation for the evolution of SIM. Here, we present an alternative mechanism for solitary individuals with overlapping generations. We propose an analytical model (comprising Field’s former approach) utilizing growth rate instead of lifetime reproductive success as a measure of fitness. Our model shows that multiplicative geometric effects on fitness would typically compensate for the demographic disadvantages of SIM (due to prolonged dependency) and consequently support the evolution of SIM over SEQ for a wide range of life history parameters. The optimal level of SIM (i.e., the optimal number of eggs laid simultaneously) is determined by offspring development time, survival rates, and foraging efficiency of the mother. Only extreme values of these demographic parameters would favor a transition to SEQ behavior. Our model provides a coherent explanation of selective favoring of SIM over SEQ that may also contribute to understanding why SIM is the dominant strategy among social insect species.

Significance statement

Workers in social insects typically feed several offspring simultaneously while solitary species with parental care—apart from a few exceptions—provision brood cells one after another. The provisioning pattern might play a prominent role in the evolutionary pathway to higher social organization. Based on a novel theoretical approach, we show that geometric growth benefits increase selection pressure towards simultaneous progressive provisioning in species with generation overlap. Such geometric benefits may specifically emerge in seasonal eusocial species. This result alters former assessment of causal mechanisms and extends findings focusing on solitary insects. It adds a new and reasonable explanation for the dominance of simultaneous provisioning among social species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (eds) (1965) Handbook of mathematical functions: with formulas, graphs, and mathematical tables, 9. Revised edition. Dover Publications, New York

  • Batra SWT (1964) Behavior of the social bee, Lasioglossum zephyrum, within the nest (Hymenoptera: Halictidæ). Insect Soc 11:159–185. doi:10.1007/BF02222935

    Article  Google Scholar 

  • Beekman M, Lingeman R, Kleijne FM, Sabelis MW (1998) Optimal timing of the production of sexuals in bumblebee colonies. Entomol Exp Appl 88:147–154. doi:10.1046/j.1570-7458.1998.00356.x

    Article  Google Scholar 

  • Benton TG, Grant A (2000) Evolutionary fitness in ecology: comparing measures of fitness in stochastic, density-dependent environments. Evol Ecol Res 2:769–789

    Google Scholar 

  • Bohart RM, Menke AS (1976) Sphecid wasps of the world: a generic revision. University of California Press, Berkeley

  • Bosch J, Maeta Y, Rust R (2001) A phylogenetic analysis of nesting behavior in the genus Osmia (Hymenoptera: Megachilidae). Ann Entomol Soc Am 94:617–627. doi:10.1603/0013-8746(2001)094[0617:APAONB]2.0.CO;2

    Article  CAS  Google Scholar 

  • Cartar RV, Dill LM (1991) Costs of energy shortfall for bumble bee colonies: predation, social parasitism, and brood development. Can Entomol 123:283–293. doi:10.4039/Ent123283-2

    Article  Google Scholar 

  • Chadab R (1979) Early warning cues for social wasps attacked by army ants. Psyche J Entomol 86:115–123. doi:10.1155/1979/38164

    Article  Google Scholar 

  • Core Team R (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Cowan D (1991) The solitary and presocial Vespidae. In: Ross K, Matthews R (eds) The social biology of wasps. Cornell University Press, Ithaca, pp 33–73

    Google Scholar 

  • Duchateau MJ, Velthuis HHW (1988) Development and reproductive strategies in Bombus terrestris colonies. Behaviour 107:186–207. doi:10.1163/156853988X00340

    Article  Google Scholar 

  • Dyer FC, Seeley TD (1991) Nesting behavior and the evolution of worker tempo in four honey bee species. Ecology 72:156–170. doi:10.2307/1938911

    Article  Google Scholar 

  • Eickwort GC, Eickwort JM, Gordon J et al (1996) Solitary behavior in a high-altitude population of the social sweat bee Halictus rubicundus (Hymenoptera: Halictidae). Behav Ecol Sociobiol 38:227–233. doi:10.1007/s002650050236

    Article  Google Scholar 

  • Engen S, Sæther BE (2017) R- and K-selection in fluctuating populations is determined by the evolutionary trade-off between two fitness measures: growth rate and lifetime reproductive success. Evolution 71:167–173. doi:10.1111/evo.13104

    Article  PubMed  Google Scholar 

  • Ferton C (1902) Notes détachées suri ‘instinct des Hyménoptères mellifères et ravisseurs avec la description de quelques espèces. Ann Soc Entom Fr LXXI:499–529

    Google Scholar 

  • Field J (2005) The evolution of progressive provisioning. Behav Ecol 16:770–778. doi:10.1093/beheco/ari054

    Article  Google Scholar 

  • Field J, Brace S (2004) Pre-social benefits of extended parental care. Nature 428:650–652. doi:10.1038/nature02427

    Article  CAS  PubMed  Google Scholar 

  • Field J, Shreeves G, Sumner S, Casiraghi M (2000) Insurance-based advantage to helpers in a tropical hover wasp. Nature 404:869–871. doi:10.1038/35009097

    Article  CAS  PubMed  Google Scholar 

  • Field J, Turner E, Fayle T, Foster WA (2007) Costs of egg-laying and offspring provisioning: multifaceted parental investment in a digger wasp. Proc R Soc Lond B Biol Sci 274:445–451. doi:10.1098/rspb.2006.3745

    Article  Google Scholar 

  • Freeman BE (1980) A population study in Jamaica on adult Sceliphron assimile (Dahlbom) (Hymenoptera: Sphecidae). Ecol Entomol 5:19–30. doi:10.1111/j.1365-2311.1980.tb01120.x

    Article  Google Scholar 

  • Greene A (1984) Production schedules of vespine wasps: an empirical test of the bang-bang optimization model. J Kansas Entomol Soc 57:545–568

    Google Scholar 

  • Herre EA, Wcislo WT (2011) In defence of inclusive fitness theory. Nature 471:E8–E9. doi:10.1038/nature09835

    Article  CAS  PubMed  Google Scholar 

  • Hunt JH (1999) Trait mapping and salience in the evolution of eusocial vespid wasps. Evolution:225–237

  • Hunt JH, Amdam GV (2005) Bivoltinism as an antecedent to eusociality in the paper wasp genus Polistes. Science 308:264–267. doi:10.1126/science.1109724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeanne RL (1979) A latitudinal gradient in rates of ant predation. Ecology 60:1211–1224. doi:10.2307/1936968

    Article  Google Scholar 

  • Jeanne RL (1991) The swarm-founding Polistinae. 191–231. In: Ross KG, Matthews RW (eds) The social biology of wasps. Cornell University Press, Ithaca

    Google Scholar 

  • Kukuk PF, Ward SA, Jozwiak A (1998) Mutualistic benefits generate an unequal distribution of risky activities among unrelated group members. Naturwissenschaften 85:445–449. doi:10.1007/s001140050528

    Article  CAS  Google Scholar 

  • Longair RW (2004) Tusked males, male dimorphism and nesting behavior in a subsocial afrotropical wasp, Synagris cornuta, and weapons and dimorphism in the genus (Hymenoptera: Vespidae: Eumeninae). J Kans Entomol Soc 77:528–557. doi:10.2317/E-38.1

    Article  Google Scholar 

  • Macevicz S, Oster G (1976) Modeling social insect populations II: optimal reproductive strategies in annual eusocial insect colonies. Behav Ecol Sociobiol 1:265–282

    Article  Google Scholar 

  • Malyshev SI (1968) Genesis of the Hymenoptera and the phases of their evolution. Richard Clay (The Chaucer Press), Ltd., Bungay

    Google Scholar 

  • Mead F, Habersetzer C, Gabouriaut D, Gervet J (1994) Dynamics of colony development in the paper wasp Polistes dominulus Christ (Hymenoptera, Vespidae): the influence of prey availability. J Ethol 12:43–51. doi:10.1007/BF02350079

    Article  Google Scholar 

  • Michener CD (2000) The bees of the world. John Hopkins University Press

  • Mitesser O, Weissel N, Strohm E, Poethke H-J (2006) The evolution of activity breaks in the nest cycle of annual eusocial bees: a model of delayed exponential growth. BMC Evol Biol 6:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Oster G, Wilson EO (1978) Caste and ecology in the social insects. Princeton University Press, Princeton

    Google Scholar 

  • Pesenko YA, Banaszak J, Radchenko VG, Cierzniak T (2000) Bees of the family Halictidae excluding Sphecodes of Poland: taxonomy, ecology, bionomics. Wydawnictwo Uczelniane, Bydgoszcz

    Google Scholar 

  • Queller DC (1994) Extended parental care and the origin of eusociality. Proc R Soc Lond B Biol Sci 256:105–111. doi:10.1098/rspb.1994.0056

    Article  Google Scholar 

  • Queller DC (1996) The origin and maintenance of eusociality: the advantage of extended parental care. In: Turillazzi S, West-Eberhard MJ (eds) Natural history and evolution of paper-wasps. Oxford University Press, Oxford, pp 218–234

    Google Scholar 

  • Reeve HK (1991) Polistes. In: Ross KG, Matthews RW (eds) The social biology of wasps. Cornell University Press, London, pp 99–148

    Google Scholar 

  • Richards OW, Richards MJ (1951) Observations on the social wasps of South America (Hymenoptera Vespidae). Trans R Entomol Soc Lond 102:1–169. doi:10.1111/j.1365-2311.1951.tb01241.x

    Article  Google Scholar 

  • Roff DA (2001) Life history evolution, 1st edn. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Roubaud E (1916) Recherches biologiques sur les guêpes solitaires et sociales d’Afrique. Ann Sci Nat Zool 1:1–160

    Google Scholar 

  • Schatz B, Wcislo WT (1999) Ambush predation by the ponerine ant Ectatomma ruidum Roger (Formicidae) on a sweat bee Lasioglossum umbripenne (Halictidae), in Panama. J Insect Behav 12:641–663. doi:10.1023/A:1020927703689

    Article  Google Scholar 

  • Seeley TD, Seeley RH, Akratanakul P (1982) Colony defense strategies of the honeybees in Thailand. Ecol Monogr 52:43–63. doi:10.2307/2937344

    Article  Google Scholar 

  • Seger J (1983) Partial bivoltinism may cause alternating sex-ratio biases that favour eusociality. Nature 301:59–62. doi:10.1038/301059a0

    Article  Google Scholar 

  • Spradbery JP (1973) Wasps. University of Washington Press, Seattle

    Google Scholar 

  • Strassmann JE, Orgren MCF (1983) Nest architecture and brood development times in the paper wasp, Polistes exclamans (Hymenoptera: Vespidae). Psyche J Entomol 90:237–248. doi:10.1155/1983/32347

    Article  Google Scholar 

  • Strohm E, Marliani A (2002) The cost of parental care: prey hunting in a digger wasp. Behav Ecol 13:52–58. doi:10.1093/beheco/13.1.52

    Article  Google Scholar 

  • Toft CA (1987) Population structure and survival in a solitary wasp (Microbembex cubana: Hymenoptera, Sphecidae, Nyssoninae). Oecologia 73:338–350. doi:10.1007/BF00385249

    Article  CAS  PubMed  Google Scholar 

  • Weissel N, Mitesser O, Liebig J et al (2006) The influence of soil temperature on the nesting cycle of the halictid bee Lasioglossum malachurum. Insect Soc 53:390–398. doi:10.1007/s00040-005-0884-7

    Article  Google Scholar 

  • West-Eberhard MJ (2005) Behavior of the primitively social wasp Montezumia cortesioides Willink (Vespidae Eumeninae) and the origins of vespid sociality. Ethol Ecol Evol 17:201–215. doi:10.1080/08927014.2005.9522592

    Article  Google Scholar 

  • Wilson EO (1971) The insects societies. Belknap Press of Harvard University Press

  • Wilson EO (2008) One giant leap: how insects achieved altruism and colonial life. Bioscience 58:17–25. doi:10.1641/B580106

    Article  Google Scholar 

  • Wolfram Research Inc. (2016) Mathematica, Version 10.4, Champaign, IL

  • Yanega D (1997) Demography and sociality in halictine bees (Hymenoptera: Halictidae). In: Crespi BJ, Choe JC (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp 293–315

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Foundation (DFG). Achim Poethke, Thomas Hovestadt, and Oliver Mitesser gratefully acknowledge financial support by the German Research Foundation (DFG), Collaborative Research Center SFB 1047 “Insect timing,” Project C6. We would like to thank two anonymous reviewers for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Mitesser.

Ethics declarations

Funding

This work was supported by the German Research Foundation (DFG), Collaborative Research Center SFB 1047 “Insect timing,” Project C6.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

There were no animal experiments or field observations in this study.

Informed consent

There were no human participants in this study, but informed consent was obtained from all of those involved in the study.

Additional information

Communicated by J. Field

Appendix

Appendix

Proposition 1:

Lifetime reproductive success (LRS) is always decreasing with clutch size b if b > D L /f.

Proof:

If b > D L /f, factor q is independent of b: \( q={s}^{D_P} \). LRS is \( R=w\frac{b{s}^{f\cdotp b}}{1-{s}^{f\cdotp b}} \) with w = (q + (1 − q)(1 − μ)). Calculating the derivative with respect to b yields

$$ {R}^{\prime }(b)=-w\frac{s^{fb}\left({s}^{bf}-bf \ln (s)-1\right)}{{\left({s}^{bf}-1\right)}^2}=-w\frac{s^{fb}\left({s}^{bf}- \ln \left({s}^{bf}\right)-1\right)}{{\left({s}^{bf}-1\right)}^2}=w\frac{y\left(1-y+ \ln (y)\right)}{{\left(y-1\right)}^2} $$
(9)

with y = s bf and 0 < y < 1. Function g(y) = 1 − y + ln(y) decides on the sign of R (b). At the interval borders, g(y → 0) =  − ∞ and g(1) = 0. g (y) = 1/y − 1 is always >0 for 0 < y < 1. Thus, g(y) is always <0 for 0 < y < 1 and R (b) is always negative.

Proposition 2:

If b ≤ D L /f, lifetime reproductive success is always decreasing with clutch size b for μ = 0 and always increasing for μ = 1.

Proof:

If b ≤ D L /f, factor q depends on b: \( q={s}^{D_P+{D}_L-bf} \). LRS is \( R={w}^{\prime}\mu \frac{b}{1-{s}^{f\cdot b}}+\left(1-\mu \right)\frac{b{s}^{fb}}{1-{s}^{f\cdot b}} \) with \( {w}^{\prime }={s}^{D_L+{D}_P} \). If μ = 0, the arguments from A1 can be applied to show that R (b) is always negative, too. If μ = 1,

$$ {R}^{\prime }(b)={w}^{\prime}\frac{1-y+y \ln (y)}{{\left(1-y\right)}^2} $$
(10)

Function \( \overset{\sim }{g}(y)=-y+y \ln (y)+1 \) decides on the sign of R (b). \( \overset{\sim }{g}\left(y\to 0\right)=1 \) and \( \overset{\sim }{g}(1)=0 \). \( {\overset{\sim }{g}}^{\prime }(y)=\mathit{\ln}(y) \) is always negative, and thus, \( \overset{\sim }{g}(y) \) is always positive for 0 < y < 1. Thus, R (b) is always positive.

Proposition 3:

There is no local relative maximum of lifetime reproductive success for b ≤ D L /f, and lifetime reproductive success is maximized for b = 1 or b = D L /f.

Proof:

In general, the derivative of LRS R(b) is

$$ {R}^{\prime }(b)={w}^{\prime}\mu A-\left(1-\mu \right)B $$

with \( A=\frac{1-y+y \ln (y)}{\left(1-y\right)2} \) and \( B=-\frac{y\left(1-y+\mathit{\ln}(y)\right)}{{\left(y-1\right)}^2} \)

LRS R(b) is increasing as long as R (b) > 0. We further analyze this condition:

$$ {R}^{\prime }(b)>0\iff {w}^{\prime}\mu A-\left(1-\mu \right)B>0\iff \frac{w^{\prime}\mu }{1-\mu }>\frac{B}{A} $$
(11)

h(y) = B/A is always increasing for increasing y within the interval 0 < y < 1 (Fig. 4).

Fig. 4
figure 4

Function h(y) = B/A in dependence of y.

Thus, there must be a value y 0 such that if y < y 0, then \( \frac{B}{A}<\frac{w^{\prime}\mu }{1-\mu } \). It is not necessary to calculate y 0 —we further just make use of its existence. As y = s bf, the derivative of LRS R is always greater than 0 (and R(b) is increasing) if b > b 0 with \( {b}_0= \ln \frac{y_0}{f \ln (s)} \). If b is smaller than this threshold, R(b) is decreasing. In general, R(b) is either always decreasing from b = 1 to b = D L /f or it is decreasing from b = 1 to b = b 0 and increasing from b = b 0 to b = D L /f. In either case, LRS cannot have a local maximum.

Corollary 4: Critical values of offspring dependency μ promoting the transition from SEQ to SIM can be calculated analytically from Eq. (5) for any parameter combination:

$$ {\mu}_{crit}\left({D}_L,{D}_P,s,f\right)=\frac{L}{s^{D_L+{D}_P}K+L} $$
(12)

with \( K=\frac{1}{1-{s}^f}-\frac{D_L}{1-{s}^{f{D}_L}} \) and \( L=\frac{D_L{s}^{f{D}_L}}{1-{s}^{f{D}_L}}-\frac{s^f}{1-{s}^f} \).

This directly follows from A3. A transition between SEQ and SIM as optimal strategies will occur when

$$ R(1)=R\left({D}_L/f\right) $$

This can be used to determine threshold values for any parameter in dependence of the others.

Corollary 5:

$$ \underset{s\to 1}{\mathit{\lim}}{\mu}_{crit}\left({D}_L,{D}_P,s,f\right)=1/2 $$

This limit can easily been calculated by applying the Limit[] function of the computer algebra system Mathematica (Wolfram Research Inc. 2016) to Eq. (12).

Proposition 4:

Worker number W max at the beginning of sexual production affects final cumulative sexual number S(T) at time t = T after the beginning of sexual production as a linear multiplicative factor in the colony model provided by Oster and Wilson (1978): S(T) ∼ W max

Proof:

The dynamic equation for the number of sexuals S(t) at time t after the onset of sexual production is

$$ \frac{\partial S(t)}{\partial t}=c{W}_{max}{e}^{-\mu t}-\nu S(t) $$
(13)

with worker efficiency rate c, worker mortality rate μ, and sexual mortality rate ν. The solution to this equation is

$$ S(t)=\frac{c{W}_{max}}{\mu -\nu}\left({e}^{-\nu t}-{e}^{-\mu t}\right) $$

resulting in

$$ S(T)\sim {W}_{max} $$

at the end of the season when t = T. Calculation has been checked with computer algebra system Mathematica (Wolfram Research Inc. 2016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitesser, O., Poethke, HJ., Strohm, E. et al. The evolution of simultaneous progressive provisioning revisited: extending the model to overlapping generations. Behav Ecol Sociobiol 71, 127 (2017). https://doi.org/10.1007/s00265-017-2355-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00265-017-2355-8

Keywords

Navigation