Skip to main content
Log in

Lost signature: progress and failures in in vivo tracking of implanted stem cells

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Stem cell therapy as a part of regenerative medicine provides promising approaches for the treatment of injuries and diseases. The increasing use of mesenchymal stem cells in various medical treatments created the demand for long-term in vivo cell tracking methods. Therefore, it is necessary to analyze post-transplantational survival, biodistribution, and engraftment of cells. Furthermore, stem cell treatment has been discussed controversially due to possible association with tumor formation in the recipient. For therapeutic purpose, stem cells must undergo substantial manipulation such as differentiation and in vitro expansion, and this can lead to the occurrence of genetic aberrations and altered expression of both tumor suppression and carcinogenic factors. To control therapy, it is necessary to find a reliable and general method to track and identify implanted cells in the recipient. This is especially challenging for autologous transplantations, as standard fingerprinting methods cannot be applied. An optimal technique for in vivo cell monitoring does not yet exist, and its development holds several challenges: small numbers of transplanted cells, possibility of cell number quantification, minimal transfer of the contrast agent to non-transplanted cells, and no genetic modification. This review discusses most of the proposed solutions, including magnetic resonance imaging, magnetic particle imaging, positron emission tomography, single-photon emission computed tomography, and optical imaging methods. Additionally, the recent research on cell labeling for stem cell monitoring after transplantation including in vitro, ex vivo, and in vivo imaging studies is described. Promising future imaging modalities for stem cell monitoring after transplantation are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abraham JL, Thakral C (2008) Tissue distribution and kinetics of gadolinium and nephrogenic systemic fibrosis. Eur J Radiol 66(2):200–207. doi:10.1016/j.ejrad.2008.01.026

    Article  PubMed  Google Scholar 

  • Adrian EK, Walker BE (1962) Incorporation of thymidine-H3 by cells in normal and injured mouse spinal cord. J Neuropathol Exp Neurol 21(4):597–609

    Article  PubMed  Google Scholar 

  • Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, Trakhtenbrot L, Paz N, Koren-Michowitz M, Waldman D, Leider-Trejo L, Toren A, Constantini S, Rechavi G (2009) Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med 6(2):221–231

    Article  CAS  Google Scholar 

  • Arbab AS, Yocum GT, Kalish H, Jordan EK, Anderson SA, Khakoo AY, Read EJ, Frank JA (2004) Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104(4):1217–1223. doi:10.1182/blood-2004-02-0655

    Article  CAS  PubMed  Google Scholar 

  • Bai X, Yan Y, Coleman M, Wu G, Rabinovich B, Seidensticker M, Alt E (2011) Tracking long-term survival of intramyocardially delivered human adipose tissue-derived stem cells using bioluminescence imaging. Mol Imaging Biol 13(4):633–645. doi:10.1007/s11307-010-0392-z

    Article  PubMed  Google Scholar 

  • Bangari DS, Mittal SK (2006) Current strategies and future directions for eluding adenoviral vector immunity. Curr Gene Ther 6(2):215–226. doi:10.2174/156652306776359478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A, Miller L, Guetta E, Zipori D, Kedes LH, Kloner RA, Leor J (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium—feasibility, cell migration, and body distribution. Circulation 108(7):863–868. doi:10.1161/01.cir.0000084828.50310.6a

    Article  PubMed  Google Scholar 

  • Bargheer D, Giemsa A, Freund B, Heine M, Waurisch C, Stachowski GM, Hickey SG, Eychmuller A, Heeren J, Nielsen P (2015) The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice. Beilstein J Nanotechnol 6:111–123. doi:10.3762/bjnano.6.11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barozzi P, Luppi M, Facchetti F, Mecucci C, Alu M, Sarid R, Rasini V, Ravazzini L, Rossi E, Festa S, Crescenzi B, Wolf DG, Schulz TF, Torelli G (2003) Post-transplant Kaposi sarcoma originates from the seeding of donor-derived progenitors. Nat Med 9(5):554–561. doi:10.1038/nm862

    Article  CAS  PubMed  Google Scholar 

  • Bartelle BB, Szulc KU, Suero-Abreu GA, Rodriguez JJ, Turnbull DH (2013) Divalent metal transporter, DMT1: a novel MRI reporter protein. Magn Reson Med 70(3):842–850. doi:10.1002/mrm.24509

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bhargava KK, Gupta RK, Nichols KJ, Palestro CJ (2009) In vitro human leukocyte labeling with Cu-64: an intraindividual comparison with In-111-oxine and F-18-FDG. Nucl Med Biol 36(5):545–549. doi:10.1016/j.nucmedbio.2009.03.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bindslev L, Haack-Sorensen M, Bisgaard K, Kragh L, Mortensen S, Hesse B, Kjaer A, Kastrup J (2006) Labelling of human mesenchymal stem cells with indium-111 for SPECT imaging: effect on cell proliferation and differentiation. Eur J Nucl Med Mol Imaging 33(10):1171–1177. doi:10.1007/s00259-006-0093-7

    Article  CAS  PubMed  Google Scholar 

  • Borgert J, Schmidt JD, Schmale I, Rahmer J, Bontus C, Gleich B, David B, Eckart R, Woywode O, Weizenecker J, Schnorr J, Taupitz M, Haegele J, Vogt FM, Barkhausen J (2012) Fundamentals and applications of magnetic particle imaging. J Cardiovasc Comput Tomogr 6(3):149–153. doi:10.1016/j.jcct.2012.04.007

    Article  PubMed  Google Scholar 

  • Brenner W, Aicher A, Eckey T, Massoudi S, Zuhayra M, Koehl U, Heeschen C, Kampen WU, Zeiher AM, Dimmeler S, Henze E (2004) In-111-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. J Nucl Med 45(3):512–518

    CAS  PubMed  Google Scholar 

  • Brown JC (2013) Exploring contemporary issues in genetics & society: karyotyping, biological sex, & gender. Am Biol Teach 75(9):692–697. doi:10.1525/abt.2013.75.9.11

    Article  Google Scholar 

  • Bulte JWM (2009) In vivo MRI cell tracking: clinical studies. Am J Roentgenol 193(2):314–325

    Article  Google Scholar 

  • Bulte JWM, Ma LD, Magin RL, Kamman RL, Hulstaert CE, Go KG, The TH, Deleij L (1993) Selective MR imaging of labeled human peripheral-blood mononuclear-cells by liposome mediated incorporation of dextran-magnetite particles. Magn Reson Med 29(1):32–37. doi:10.1002/mrm.1910290108

    Article  CAS  PubMed  Google Scholar 

  • Bulte JWM, Laughlin PG, Jordan EK, Tran VA, Vymazal J, Frank JA (1996) Tagging of T cells with superparamagnetic iron oxide: uptake kinetics and relaxometry. Acad Radiol 3:S301–S303. doi:10.1016/s1076-6332(96)80564-2

    Article  PubMed  Google Scholar 

  • Bulte JWM, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19(12):1141–1147. doi:10.1038/nbt1201-1141

    Article  CAS  PubMed  Google Scholar 

  • Bulte JWM, Ben-Hur T, Miller BR, Mizrachi-Kol R, Einstein O, Reinhartz E, Zywicke HA, Douglas T, Frank JA (2003) MR microscopy of magnetically labeled neurospheres transplanted into the Lewis EAE rat brain. Magn Reson Med 50(1):201–205. doi:10.1002/mrm.10511

    Article  PubMed  Google Scholar 

  • Burns TC, Ortiz-Gonzalez XR, Gutierrez-Perez M, Keene CD, Sharda R, Demorest ZL, Jiang Y, Nelson-Holte M, Soriano M, Nakagawa Y, Luquin MR, Garcia-Verdugo JM, Prosper F, Low WC, Verfaillie CM (2006) Thymidine analogs are transferred from prelabeled donor to host cells in the central nervous system after transplantation: a word of caution. Stem Cells 24(4):1121–1127. doi:10.1634/stemcells.2005-0463

    Article  CAS  PubMed  Google Scholar 

  • Bushman F, Lewinski M, Ciuffi A, Barr S, Leipzig J, Hannenhalli S, Hoffmann C (2005) Genome wide analysis of retroviral DNA integration. Nat Rev Microbiol 3(11):848–858. doi:10.1038/nrmicro1263

    Article  CAS  PubMed  Google Scholar 

  • Campan M, Lionetti V, Aquaro GD, Forini F, Matteucci M, Vannucci L, Chiuppesi F, Di Cristofano C, Faggioni M, Maioli M, Barile L, Messina E, Lombardi M, Pucci A, Pistello M, Recchia FA (2011) Ferritin as a reporter gene for in vivo tracking of stem cells by 1.5-T cardiac MRI in a rat model of myocardial infarction. Am J Physiol Heart Circ Physiol 300(6):H2238–H2250. doi:10.1152/ajpheart.00935.2010

    Article  CAS  PubMed  Google Scholar 

  • Castaneda RT, Khurana A, Khan R, Daldrup-Link HE (2011) Labeling stem cells with ferumoxytol, an FDA-approved iron oxide nanoparticle. J Vis Exp (57). doi:10.3791/3482

  • Chen MF, Lin CT, Chen WC, Yang CT, Chen CC, Liao SK, Liu JM, Lu CH, Lee KD (2006) The sensitivity of human mesenchymal stem cells to ionizing radiation. Int J Radiat Oncol Biol Phys 66(1):244–253. doi:10.1016/j.ijrobp.2006.03.062

    Article  CAS  PubMed  Google Scholar 

  • Chen GC, Tian F, Zhang Y, Zhang YJ, Li CY, Wang QB (2014) Tracking of transplanted human mesenchymal stem cells in living mice using near-infrared Ag-2 S quantum dots. Adv Funct Mater 24(17):2481–2488. doi:10.1002/adfm.201303263

    Article  CAS  Google Scholar 

  • Cho JH, Hong KS, Cho J, Chang SK, Cheong C, Lee NH, Kim H, Warren WS, Ahn S, Lee C (2012) Detection of iron-labeled single cells by MR imaging based on intermolecular double quantum coherences at 14 T. J Magn Reson 217:86–91. doi:10.1016/j.jmr.2012.02.014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cho IK, Moran SP, Paudyal R, Piotrowska-Nitsche K, Cheng PH, Zhang XD, Mao H, Chan AWS (2014) Longitudinal monitoring of stem cell grafts in vivo using magnetic resonance imaging with inducible maga as a genetic reporter. Theranostics 4(10):972–989. doi:10.7150/thno.9436

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cooper MS, Ma MT, Sunassee K, Shaw KP, Williams JD, Paul RL, Donnelly PS, Blower PJ (2012) Comparison of Cu-64-complexing bifunctional chelators for radioimmunoconjugation: labeling efficiency, specific activity, and in vitro/in vivo stability. Bioconjug Chem 23(5):1029–1039. doi:10.1021/bc300037w

    Article  CAS  PubMed  Google Scholar 

  • Crosignani V, Dvornikov A, Aguilar JS, Stringari C, Edwards R, Mantulin WW, Gratton E (2012) Deep tissue fluorescence imaging and in vivo biological applications. J Biomed Opt 17(11). doi:10.1117/1.jbo.17.11.116023

  • Dammacco F, Rubini G, Ferrari C, Vacca A, Racanelli V (2015) F-18-FDG PET/CT: a review of diagnostic and prognostic features in multiple myeloma and related disorders. Clin Exp Med 15(1):1–18. doi:10.1007/s10238-014-0308-3

    Article  CAS  PubMed  Google Scholar 

  • de Almeida PE, van Rappard JRM, Wu JC (2011) In vivo bioluminescence for tracking cell fate and function. Am J Physiol Heart Circ Physiol 301(3):H663–H671. doi:10.1152/ajpheart.00337.2011

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • De Vocht N, Reekmans K, Bergwerf I, Praet J, Hoornaert C, Le Blon D, Daans J, Berneman Z, Van der Linden A, Ponsaerts P (2012) Multimodal imaging of stem cell implantation in the central nervous system of mice. J Vis Exp (64). doi:10.3791/3906

  • Debbage P, Jaschke W (2008) Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochem Cell Biol 130(5):845–875. doi:10.1007/s00418-008-0511-y

    Article  CAS  PubMed  Google Scholar 

  • Defresne F, Tondreau T, Stephenne X, Smets F, Bourgois A, Najimi M, Jamar F, Sokal EM (2014) Biodistribution of adult derived human liver stem cells following intraportal infusion in a 17-year-old patient with glycogenosis type 1A. Nucl Med Biol 41(4):371–375. doi:10.1016/j.nucmedbio.2014.01.010

    Article  CAS  PubMed  Google Scholar 

  • Deloison B, Siauve N, Aimot S, Balvay D, Thiam R, Cuenod CA, Ville Y, Clement O, Salomon LJ (2012) SPIO-enhanced magnetic resonance imaging study of placental perfusion in a rat model of intrauterine growth restriction. BJOG 119(5):626–633. doi:10.1111/j.1471-0528.2011.03251.x

    Article  CAS  PubMed  Google Scholar 

  • Detante O, Moisan A, Dimastromatteo J, Richard MJ, Riou L, Grillon E, Barbier E, Desruet MD, De Fraipont F, Segebarth C, Jaillard A, Hommel M, Ghezzi C, Remy C (2009) Intravenous administration of 99mTc-HMPAO-labeled human mesenchymal stem cells after stroke: in vivo imaging and biodistribution. Cell Transplant 18(12):1369–1379. doi:10.3727/096368909x474230

    Article  PubMed  Google Scholar 

  • Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, Noel D, Jorgensen C (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102(10):3837–3844. doi:10.1182/blood-2003-04-1193

    Article  CAS  PubMed  Google Scholar 

  • Elmi A, Kajbafzadeh AM, Oghabian MA, Talab SS, Tourchi A, Khoei S, Rafie B, Esfahani SA (2014) Anal sphincter repair with muscle progenitor cell transplantation: serial assessment with iron oxide-enhanced MRI. Am J Roentgenol 202(3):619–625. doi:10.2214/ajr.13.11146

    Article  Google Scholar 

  • Elrick RH, Parker RP (1968) Use of Cerenkov radiation in measurement of beta-emitting radionuclides. Int J Appl Radiat Isot 19(3):263. doi:10.1016/0020-708x(68)90023-9

    Article  CAS  PubMed  Google Scholar 

  • Erdo F, Buhrle C, Blunk J, Hoehn M, Xia T, Fleischmann B, Focking M, Kustermann E, Kolossov E, Hescheler T, Hossmann KA, Trapp T (2003) Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab 23(7):780–785. doi:10.1097/01.wcb.0000071886.63724.fb

    PubMed  Google Scholar 

  • Feng GX, Tay CY, Chui QX, Liu RR, Tomczak N, Liu J, Tang BZ, Leong DT, Liu B (2014) Ultrabright organic dots with aggregation-induced emission characteristics for cell tracking. Biomaterials 35(30):8669–8677. doi:10.1016/j.biomaterials.2014.06.023

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Fernandez A, Manchanda R, McGoron AJ (2011) Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. Appl Biochem Biotechnol 165(7-8):1628–1651. doi:10.1007/s12010-011-9383-z

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flotte TR (2007) Gene therapy: the first two decades and the current state-of-the-art. J Cell Physiol 213(2):301–305. doi:10.1002/jcp.21173

    Article  CAS  PubMed  Google Scholar 

  • Fontanellas A, Hervas-Stubbs S, Sampedro A, Collantes M, Azpilicueta A, Mauleon I, Paneda A, Quincoces G, Prieto J, Melero I, Penuelas I (2009) PET imaging of thymidine kinase gene expression in the liver of non-human primates following systemic delivery of an adenoviral vector. Gene Ther 16(1):136–141. doi:10.1038/gt.2008.122

    Article  CAS  PubMed  Google Scholar 

  • Frangioni JV, Hajjar RJ (2004) In vivo tracking of stem cells for clinical trials in cardiovascular disease. Circulation 110(21):3378–3383. doi:10.1161/01.cir.0000149840.46523.fc

    Article  PubMed  Google Scholar 

  • Frank JA, Zywicke H, Jordan EK, Mitchell J, Lewis BK, Miller B, Bryant LH, Bulte JWM (2002) Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad Radiol 9:S484–S487. doi:10.1016/s1076-6332(03)80271-4

    Article  PubMed  Google Scholar 

  • Gaedicke S, Braun F, Prasad S, Machein M, Firat E, Hettich M, Gudihal R, Zhu XK, Klingner K, Schuler J, Herold-Mende CC, Grosu AL, Behe M, Weber W, Macke H, Niedermann G (2014) Noninvasive positron emission tomography and fluorescence imaging of CD133(+) tumor stem cells. Proc Natl Acad Sci U S A 111(6):E692–E701. doi:10.1073/pnas.1314189111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2(9):683–693. doi:10.1038/nrc882

    Article  CAS  PubMed  Google Scholar 

  • Gambhir SS, Bauer E, Black ME, Liang QW, Kokoris MS, Barrio JR, Iyer M, Namavari M, Phelps ME, Herschman HR (2000) A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci U S A 97(6):2785–2790. doi:10.1073/pnas.97.6.2785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garikipati VNS, Jadhav S, Pal L, Prakash P, Dikshit M, Nityanand S (2014) Mesenchymal stem cells from fetal heart attenuate myocardial injury after infarction: an in vivo serial pinhole gated SPECT-CT study in rats. PLoS ONE 9(6). doi:10.1371/journal.pone.0100982

  • Ge YQ, Zhang Y, He SY, Nie F, Teng GJ, Gu N (2009) Fluorescence modified chitosan-coated magnetic nanoparticles for high-efficient cellular imaging. Nanoscale Res Lett 4(4):287–295. doi:10.1007/s11671-008-9239-9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghosh SC, Pinkston KL, Robinson H, Harvey BR, Wilganowski N, Gore K, Sevick-Muraca EM, Azhdarinia A (2015) Comparison of DOTA and NODAGA as chelators for Cu-64-labeled immunoconjugates. Nucl Med Biol 42(2):177–183. doi:10.1016/j.nucmedbio.2014.09.009

    Article  CAS  PubMed  Google Scholar 

  • Gilad AA, Winnard PT, van Zijl PCM, Bulte JWM (2007) Developing MR reporter genes: promises and pitfalls. NMR Biomed 20(3):275–290. doi:10.1002/nbm.1134

    Article  CAS  PubMed  Google Scholar 

  • Gildehaus FJ, Haasters F, Drosse I, Wagner E, Zach C, Mutschler W, Cumming P, Bartenstein P, Schieker M (2011) Impact of indium-111 oxine labelling on viability of human mesenchymal stem cells in vitro, and 3D cell-tracking using SPECT/CT in vivo. Mol Imaging Biol 13(6):1204–1214. doi:10.1007/s11307-010-0439-1

    Article  PubMed  Google Scholar 

  • Gleich B, Weizenecker R (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435(7046):1214–1217. doi:10.1038/nature03808

    Article  CAS  PubMed  Google Scholar 

  • Goodwill PW, Conolly SM (2010) The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans Med Imaging 29(11):1851–1859. doi:10.1109/tmi.2010.2052284

    Article  PubMed  Google Scholar 

  • Goodwill PW, Scott GC, Stang PP, Conolly SM (2009) Narrowband magnetic particle imaging. IEEE Trans Med Imaging 28(8):1231–1237. doi:10.1109/tmi.2009.2013849

    Article  PubMed  Google Scholar 

  • Guo RM, Cao N, Zhang F, Wang YR, Wen XH, Shen J, Shuai XT (2012a) Controllable labelling of stem cells with a novel superparamagnetic iron oxide-loaded cationic nanovesicle for MR imaging. Eur Radiol 22(11):2328–2337. doi:10.1007/s00330-012-2509-z

    Article  PubMed  Google Scholar 

  • Guo YH, Su LX, Wu JL, Zhang D, Zhang XJ, Zhang GZ, Li TZ, Wang JF, Liu CT (2012b) Assessment of the green florescence protein labeling method for tracking implanted mesenchymal stem cells. Cytotechnology 64(4):391–401. doi:10.1007/s10616-011-9417-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ha S, Ahn S, Kim S, Joo Y, Chong YH, Suh YH, Chang KA (2014) In vivo imaging of human adipose-derived stem cells in Alzheimer’s disease animal model. J Biomed Opt 19(5). doi:10.1117/1.jbo.19.5.051206

  • Hoehn M, Kustermann E, Blunk J, Wiedermann D, Trapp T, Wecker S, Focking M, Arnold H, Hescheler J, Fleischmann BK, Schwindt W, Buhrle C (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci U S A 99(25):16267–16272. doi:10.1073/pnas.242435499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hong YC, Liu HM, Chen PS, Chen YJ, Lyou JY, Hu HY, Yi MF, Lin JS, Tzeng CH (2007) Hair follicle: a reliable source of recipient origin after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 40(9):871–874. doi:10.1038/sj.bmt.1705823

    Article  CAS  PubMed  Google Scholar 

  • Hua P, Wang YY, Liu LB, Liu JL, Liu JY, Yang YQ, Yang SR (2015) In vivo magnetic resonance imaging tracking of transplanted superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells in rats with myocardial infarction. Mol Med Rep 11(1):113–120. doi:10.3892/mmr.2014.2649

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang NF, Okogbaa J, Babakhanyan A, Cooke JP (2012) Bioluminescence imaging of stem cell-based therapeutics for vascular regeneration. Theranostics 2(4):346–354. doi:10.7150/thno.3694

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hung SC, Deng WP, Yang WK, Liu RS, Lee CC, Su TC, Lin RJ, Yang DM, Chang CW, Chen WH, Wei HJ, Gelovani JG (2005) Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clin Cancer Res 11(21):7749–7756. doi:10.1158/1078-0432.ccr-05-0876

    Article  CAS  PubMed  Google Scholar 

  • Im H-J, Hwang DW, Lee HK, Jang J, Lee S, Youn H, Jin Y, Kim SU, Kim EE, Kim YS, Lee DS (2013) In vivo visualization and monitoring of viable neural stem cells using noninvasive bioluminescence imaging in the 6-Hydroxydopamine-Induced mouse model of Parkinson Disease. Mol Imaging 12(4):224–234. doi:10.2310/7290.2012.00035

    CAS  PubMed  Google Scholar 

  • Ittrich H, Peldschus K, Raabe N, Kaul M, Adam G (2013) Superparamagnetic iron oxide nanoparticles in biomedicine: applications and developments in diagnostics and therapy. RöFo 185(12):1149–1166. doi:10.1055/s-0033-1335438

    CAS  PubMed  Google Scholar 

  • Jaiswal JK, Goldman ER, Mattoussi H, Simon SM (2004) Use of quantum dots for live cell imaging. Nat Methods 1(1):73–78. doi:10.1038/nmeth1004-73

    Article  PubMed  Google Scholar 

  • Jelley JV (1955) Cerenkov radiation and its applications. Brit J Appl Phys 6(7):227–232. doi:10.1088/0508-3443/6/7/301

    Article  Google Scholar 

  • Josephson L, Tung CH, Moore A, Weissleder R (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates. Bioconjug Chem 10(2):186–191. doi:10.1021/bc980125h

    Article  CAS  PubMed  Google Scholar 

  • Kasten A, Siegmund BJ, Gruttner C, Kuhn JP, Frerich B (2015) Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types. J Magn Magn Mater 380:34–38. doi:10.1016/j.jmmm.2014.08.044

    Article  CAS  Google Scholar 

  • Ke CC, Liu RS, Suetsugu A, Kimura H, Ho JH, Lee OK, Hoffman RM (2013) In vivo fluorescence imaging reveals the promotion of mammary tumorigenesis by mesenchymal stromal cells. PLoS ONE 8(7). doi:10.1371/journal.pone.0069658

  • Kim MH, Woo SK, Lee KC, An GI, Pandya D, Park NW, Nahm SS, Eom KD, Kim KI, Lee TS, Kim CW, Kang JH, Yoo J, Lee YJ (2015) Longitudinal monitoring adipose-derived stem cell survival by PET imaging hexadecyl-4-I-124-iodobenzoate in rat myocardial infarction model. Biochem Biophys Res Commun 456(1):13–19. doi:10.1016/j.bbrc.2014.11.019

    Article  CAS  PubMed  Google Scholar 

  • Kircher MF, Gambhir SS, Grimm J (2011) Noninvasive cell-tracking methods. Nat Rev Clin Oncol 8(11):677–688. doi:10.1038/nrclinonc.2011.141

    Article  CAS  PubMed  Google Scholar 

  • Knopp T, Buzug TM (2012) Magnetic particle imaging: an introduction to imaging principles and scanner instrumentation. Springer

  • Kokhuis TJA, Skachkov I, Naaijkens BA, Juffermans LJM, Kamp O, Kooiman K, van der Steen AFW, Versluis M, de Jong N (2015) Intravital microscopy of localized stem cell delivery using microbubbles and acoustic radiation force. Biotechnol Bioeng 112(1):220–227. doi:10.1002/bit.25337

    Article  CAS  PubMed  Google Scholar 

  • Kraitchman DL, Bulte JWM (2009) In vivo imaging of stem cells and beta cells using direct cell labeling and reporter gene methods. Arterioscler Thromb Vasc Biol 29(7):1025–1030. doi:10.1161/atvbaha.108.165571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krejci J, Pachernik J, Hampl A, Dvorak P (2008) In vitro labelling of mouse embryonic stem cells with SPIO nanoparticles. Gen Physiol Biophys 27(3):164–173

    CAS  PubMed  Google Scholar 

  • Lang C, Lehner S, Todica A, Boening G, Zacherl M, Franz WM, Krause BJ, Bartenstein P, Hacker M, David R (2014) In-vivo comparison of the acute retention of stem cell derivatives and fibroblasts after intramyocardial transplantation in the mouse model. Eur J Nucl Med Mol Imaging 41(12):2325–2336. doi:10.1007/s00259-014-2858-8

    Article  CAS  PubMed  Google Scholar 

  • Lapa C, Luckerath K, Malzahn U, Samnick S, Einsele H, Buck AK, Herrmann K, Knop S (2014) (18)FDG-PET/CT for prognostic stratification of patients with multiple myeloma relapse after stem cell transplantation. Oncotarget 5(17):7381–7391

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee S, Youn H, Chung T, Hwang DW, Oh SW, Kang KW, Chung J-K, Lee DS (2014) In vivo bioluminescence imaging of transplanted mesenchymal stem cells as a potential source for pancreatic regeneration. Mol Imaging 13. doi:10.2310/7290.2014.00023

  • Letourneau M, Tremblay M, Faucher L, Rojas D, Chevallier P, Gossuin Y, Lagueux J, Fortin MA (2012) MnO-labeled cells: positive contrast enhancement in MRI. J Phys Chem B 116(44):13228–13238. doi:10.1021/jp3032918

    Article  CAS  PubMed  Google Scholar 

  • Lewis CM, Graves SA, Hernandez R, Valdovinos HF, Barnhart TE, Cai WB, Meyerand ME, Nickles RJ, Suzuki M (2015) Mn-52 production for PET/MRI tracking of human stem cells expressing divalent metal transporter 1 (DMT1). Theranostics 5(3):227–239. doi:10.7150/thno.10185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li ZX, Dullmann J, Schiedlmeier B, Schmidt M, von Kalle C, Meyer J, Forster M, Stocking C, Wahlers A, Frank O, Ostertag W, Kuhlcke K, Eckert HG, Fehse B, Baum C (2002) Murine leukemia induced by retroviral gene marking. Science 296(5567):497. doi:10.1126/science.1068893

    Article  CAS  PubMed  Google Scholar 

  • Li ZJ, Suzuki Y, Huang M, Cao F, Xie XY, Connolly AJ, Yang PC, Wu JC (2008) Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells 26(4):864–873. doi:10.1634/stemcells.2007-0843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li HY, Wang YS, Cao F (2013) In vivo bioluminescence imaging monitoring of stem cells’ participation in choroidal neovascularization. Ophthalmic Res 50(1):19–26. doi:10.1159/000348737

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Hu X, Mao J, Liu X, Zhang L, Liu J, Li D, Shan H (2015) Optimization of mesenchymal stem cells (MSCs) delivery dose and route in mice with acute liver injury by bioluminescence imaging. Mol Imaging Biol 17(2):185–194. doi:10.1007/s11307-014-0792-6

    Article  PubMed  Google Scholar 

  • Liang Y, Walczak P, Bulte JWM (2012) Comparison of red-shifted firefly luciferase Ppy RE9 and conventional Luc2 as bioluminescence imaging reporter genes for in vivo imaging of stem cells. J Biomed Opt 17(1). doi:10.1117/1.jbo.17.1.016004

  • Liu J, Cheng ECH, Long RC Jr, Yang S-H, Wang L, Cheng P-H, Yang J, Wu D, Mao H, Chan AWS (2009) Noninvasive monitoring of embryonic stem cells in vivo with MRI transgene reporter. Tissue Eng C Methods 15(4):739–747. doi:10.1089/ten.tec.2008.0678

    Article  CAS  Google Scholar 

  • Liu YL, Ai KL, Yuan QH, Lu LH (2011) Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging. Biomaterials 32(4):1185–1192. doi:10.1016/j.biomaterials.2010.10.022

    Article  CAS  PubMed  Google Scholar 

  • Lu R, Neff NF, Quake SR, Weissman IL (2011) Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat Biotechnol 29(10):928–933. doi:10.1038/nbt.1977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ludtke-Buzug K, Rapoport DH, Schneider D (2010) Characterization of iron-oxide loaded adult stem cells for magnetic particle imaging in targeted cancer therapy. In: Hafeli U, Schutt W, Zborowski M (eds) 8th International Conference on the Scientific and Clinical Applications of Magnetic Carriers. AIP Conference Proceedings, vol 1311. Amer Inst Physics, Melville, pp 244–248

    Google Scholar 

  • Marshall E (1999) Clinical trials—gene therapy death prompts review of adenovirus vector. Science 286(5448):2244–2245. doi:10.1126/science.286.5448.2244

    Article  CAS  PubMed  Google Scholar 

  • McConnell SK (1985) Migration and differentiation of cerebral cortical-neurons after transplantation into the brains of ferrets. Science 229(4719):1268–1271. doi:10.1126/science.4035355

    Article  CAS  PubMed  Google Scholar 

  • Meller J, Koster G, Liersch T, Siefker U, Lehmann K, Meyer I, Schreiber K, Altenvoerde G, Becker W (2002) Chronic bacterial osteomyelitis: prospective comparison of F-18-FDG imaging with a dual-head coincidence camera and In-111-labelled autologous leucocyte scintigraphy. Eur J Nucl Med 29(1):53–60

    Article  CAS  Google Scholar 

  • Min JJ, Ahn Y, Moon S, Kim YS, Park JE, Mn JJ, Le UN, Wu JC, Joo SY, Hong MH, Yang DH, Jeong MH, Song CH, Jeong YH, Yoo KY, Kang KS, Bom HS (2006) In vivo bioluminescence imaging of cord blood derived mesenchymal stem cell transplantation into rat myocardium. Ann Nucl Med 20(3):165–170

    Article  PubMed  Google Scholar 

  • Moreno-Romero JA, Segura S, Mascaro JM, Cowper SE, Julia M, Poch E, Botey A, Herrero C (2007) Nephrogenic systemic fibrosis: a case series suggesting gadolinium as a possible aetiological factor. Br J Dermatol 157(4):783–787. doi:10.1111/j.1365-2133.2007.08067.x

    Article  CAS  PubMed  Google Scholar 

  • Moter A, Gobel UB (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Meth 41(2):85–112

    Article  CAS  Google Scholar 

  • Mu SH, Wang JC, Zhou GQ, Peng WD, He ZD, Zhao ZF, Mo CP, Qu JL, Zhang J (2014) Transplantation of induced pluripotent stem cells improves functional recovery in huntington’s disease rat model. PLoS ONE 9(7). doi:10.1371/journal.pone.0101185

  • Muller-Borer B, Collins M, Gunst P, Cascio W, Kypson A (2007) Quantum dot labeling of mesenchymal stem cells. J Nanobiotechnology 5(1):9

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Murph SEH, Jacobs S, Liu JM, Hu TCC, Siegfired M, Serkiz SM, Hudson J (2012) Manganese-gold nanoparticles as an MRI positive contrast agent in mesenchymal stem cell labeling. J Nanopart Res 14(4). doi:10.1007/s11051-011-0658-7

  • Nakabayashi A, Kamei N, Sunagawa T, Suzuki O, Ohkawa S, Kodama A, Kamei G, Ochi M (2013) In vivo bioluminescence imaging of magnetically targeted bone marrow-derived mesenchymal stem cells in skeletal muscle injury model. J Orthop Res 31(5):754–759. doi:10.1002/jor.22282

    Article  CAS  PubMed  Google Scholar 

  • Nowak B, Weber C, Schober A, Zeiffer U, Liehn EA, von Hundelshausen P, Reinartz P, Schaefer WM, Buell U (2007) Indium-111 oxine labelling affects the cellular integrity of haematopoietic progenitor cells. Eur J Nucl Med Mol Imaging 34(5):715–721. doi:10.1007/s00259-006-0275-3

    Article  CAS  PubMed  Google Scholar 

  • Odaka K, Aoki I, Moriya J, Tateno K, Tadokoro H, Kershaw J, Minamino T, Irie T, Fukumura T, Komuro I, Saga T (2011) In vivo tracking of transplanted mononuclear cells using manganese-enhanced magnetic resonance imaging (MEMRI). PLoS ONE 6(10). doi:10.1371/journal.pone.0025487

  • Olivo C, Alblas J, Verweij V, Van Zonneveld AJ, Dhert WJA, Martens ACM (2008) In vivo bioluminescence imaging study to monitor ectopic bone formation by luciferase gene marked mesenchymal stem cells. J Orthop Res 26(7):901–909. doi:10.1002/jor.20582

    Article  CAS  PubMed  Google Scholar 

  • Pablico-Lansigan MH, Situ SF, Samia ACS (2013) Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and image-guided therapy. Nanoscale 5(10):4040–4055. doi:10.1039/c3nr00544e

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Yin HY, Lv J, Ju HJ, Zhou X, Zhang YF (2015) A novel hybrid baculovirus-adeno-associated viral vector-mediated radionuclide reporter gene imaging system for stem cells transplantation monitoring. Appl Microbiol Biotechnol 99(3):1415–1426. doi:10.1007/s00253-014-6162-0

    Article  CAS  PubMed  Google Scholar 

  • Pang PF, Wu C, Gong FM, Zhu KS, Meng XC, Cheng D, Hu XJ, Shan H, Shuai XT (2015) Nanovector for gene transfection and MR imaging of mesenchymal stem cells. J Biomed Nanotechnol 11(4):644–656. doi:10.1166/jbn.2015.1967

    Article  CAS  PubMed  Google Scholar 

  • Peister A, Mellad JA, Wang M, Tucker HA, Prockop DJ (2004) Stable transfection of MSCs by electroporation. Gene Ther 11(2):224–228. doi:10.1038/sj.gt.3302163

    Article  CAS  PubMed  Google Scholar 

  • Peters BA, Diaz LA, Polyak K, Meszler L, Romans K, Guinan EC, Antin JH, Myerson D, Hamilton SR, Vogelstein B, Kinzler KW, Lengauer C (2005) Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat Med 11(3):261–262. doi:10.1038/nm1200

    Article  CAS  PubMed  Google Scholar 

  • Pi QM, Zhang WJ, Zhou GD, Liu W, Cao YL (2010) Degradation or excretion of quantum dots in mouse embryonic stem cells. BMC Biotechnol 10. doi:10.1186/1472-6750-10-36

  • Pieroni DR, Varghese PJ, Freedom RM, Rowe RD (1979) The sensitivity of contrast echocardiography in detecting intracardiac shunts. Catheter Cardiovasc Diagn 5(1):19–29

    Article  CAS  Google Scholar 

  • Prahlow JA, Lantz PE, Cox-Jones K, Rao PN, Pettenati MJ (1996) Gender identification of human hair using fluorescence in situ hybridization. J Forensic Sci 41(6):1035–1037

    Article  CAS  PubMed  Google Scholar 

  • Prince MR, Zhang H, Morris M, MacGregor JL, Grossman ME, Silberzweig J, DeLapaz RL, Lee HJ, Magro CM, Valeri AM (2008) Incidence of nephrogenic systemic fibrosis at two large medical centers. Radiology 248(3):807–816. doi:10.1148/radiol.2483071863

    Article  PubMed  Google Scholar 

  • Ranjbarvaziri S, Kiani S, Akhlaghi A, Vosough A, Baharvand H, Aghdami N (2011) Quantum dot labeling using positive charged peptides in human hematopoetic and mesenchymal stem cells. Biomaterials 32(22):5195–5205. doi:10.1016/j.biomaterials.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  • Robertson R, Germanos MS, Li C, Mitchell GS, Cherry SR, Silva MD (2009) Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol 54(16):N355–N365. doi:10.1088/0031-9155/54/16/n01

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodriguez-Porcel M (2010) In vivo imaging and monitoring of transplanted stem cells: clinical applications. Curr Cardiol Rep 12(1):51–58. doi:10.1007/s11886-009-0073-1

    Article  PubMed Central  PubMed  Google Scholar 

  • Saritas EU, Goodwill PW, Croft LR, Konkle JJ, Lu K, Zheng B, Conolly SM (2013) Magnetic Particle Imaging (MPI) for NMR and MRI researchers. J Magn Reson 229:116–126. doi:10.1016/j.jmr.2012.11.029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sattel TF, Knopp T, Biederer S, Gleich B, Weizenecker J, Borgert J, Buzug TM (2009) Single-sided device for magnetic particle imaging. J Phys D Appl Phys 42(2). doi:10.1088/0022-3727/42/2/022001

  • Schonitzer V, Haasters F, Kasbauer S, Ulrich V, Mille E, Gildehaus FJ, Carlsen J, Pape M, Beck R, Delker A, Boning G, Mutschler W, Bocker W, Schieker M, Bartenstein P (2014) In vivo mesenchymal stem cell tracking with PET using the dopamine type 2 receptor and F-18-Fallypride. J Nucl Med 55(8):1342–1347. doi:10.2967/jnumed.113.134775

    Article  PubMed  CAS  Google Scholar 

  • Shah LS, Clark PA, Moioli EK, Stroscio MA, Mao JJ (2007) Labeling of mesenchymal stem cells by bioconjugated quantum dots. Nano Lett 7(10):3071–3079. doi:10.1021/nl071547f

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shen DG, Liu DF, Cao ZX, Acton PD, Zhou R (2007) Coregistration of magnetic resonance and single photon emission computed tomography images for noninvasive localization of stem cells grafted in the infarcted rat myocardium. Mol Imaging Biol 9(1):24–31. doi:10.1007/s11307-006-0062-3

    Article  PubMed Central  PubMed  Google Scholar 

  • Shichinohe H, Kuroda S, Lee JB, Nishimura G, Yano S, Seki T, Ikeda J, Tamura M, Iwasaki Y (2004) In vivo tracking of bone marrow stromal cells transplanted into mice cerebral infarct by fluorescence optical imaging. Brain Res Protocol 13(3):166–175. doi:10.1016/j.brainresprot.2004.04.004

    Article  Google Scholar 

  • Slotkin JR, Chakrabarti L, Dai HN, Carney RSE, Hirata T, Bregman BS, Gallicano GI, Corbin JG, Haydar TF (2007) In vivo quantum dot labeling of mammalian stem and progenitor cells. Dev Dyn 236(12):3393–3401. doi:10.1002/dvdy.21235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Srinivas M, Melero I, Kaempgen E, Figdor CG, De Vries IJM (2013) Cell tracking using multimodal imaging. Contrast Media Mol Imaging 8(6):432–438. doi:10.1002/cmmi.1561

    Article  CAS  PubMed  Google Scholar 

  • Stachowski GM, Bauer C, Waurisch C, Bargheer D, Nielsen P, Heeren J, Hickey SG, Eychmuller A (2014) Synthesis of radioactively labelled CdSe/CdS/ZnS quantum dots for in vivo experiments. Beilstein J Nanotechnol 5:2383–2387. doi:10.3762/bjnano.5.247

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Staessen C, Van Assche E, Joris H, Bonduelle M, Vandervorst M, Liebaers I, Van Steirteghem A (1999) Clinical experience of sex determination by fluorescent in-situ hybridization for preimplantation genetic diagnosis. Mol Hum Reprod 5(4):382–389

    Article  CAS  PubMed  Google Scholar 

  • Stodilka RZ, Blackwood KJ, Kong H, Prato FS (2006) A method for quantitative cell tracking using SPECT for the evaluation of myocardial stem cell therapy. Nucl Med Commun 27(10):807–813. doi:10.1097/01.mnm.0000237987.31597.cf

    Article  PubMed  Google Scholar 

  • Su W, Zhou M, Zheng Y, Fan Y, Wang L, Han Z, Kong D, Zhao RC, Wu JC, Xiang R, Li Z (2011) Bioluminescence reporter gene imaging characterize human embryonic stem cell-derived teratoma formation. J Cell Biochem 112(3):840–848. doi:10.1002/jcb.22982

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun MH, Sundaresan G, Jose P, Yang LK, Hoffman D, Lamichhane N, Zweit J (2014) Highly stable intrinsically radiolabeled indium-111 quantum dots with multidentate zwitterionic surface coating: dual modality tool for biological imaging. J Mater Chem B 2(28):4456–4466. doi:10.1039/c4tb00296b

    Article  CAS  Google Scholar 

  • Sun XL, Cai WB, Chen XY (2015) Positron emission tomography imaging using radio labeled inorganic nanomaterials. Accounts Chem Res 48(2):286–294. doi:10.1021/ar500362y

    Article  CAS  Google Scholar 

  • Sung CK, Hong KA, Lin S, Lee Y, Cha J, Lee JK, Hong CP, Han BS, Jung SI, Kim SH, Yoon KS (2009) Dual-modal nanoprobes for imaging of mesenchymal stem cell transplant by MRI and fluorescence imaging. Korean J Radiol 10(6):613–622. doi:10.3348/kjr.2009.10.6.613

    Article  PubMed Central  PubMed  Google Scholar 

  • Swart JF, de Roock S, Hofhuis FM, Rozemuller H, van den Broek T, Moerer P, Broere F, van Wijk F, Kuis W, Prakken BJ, Martens ACM, Wulffraat NM (2015) Mesenchymal stem cell therapy in proteoglycan induced arthritis. Ann Rheum Dis 74(4):769–777. doi:10.1136/annrheumdis-2013-204147

    Article  CAS  PubMed  Google Scholar 

  • Tang YH, Zhang CF, Wang JX, Lin XJ, Zhang L, Yang Y, Wang YT, Zhang ZJ, Bulte JWM, Yang GY (2015) MRI/SPECT/fluorescent tri-modal probe for evaluating the homing and therapeutic efficacy of transplanted mesenchymal stem cells in a rat ischemic stroke model. Adv Funct Mater 25(7):1024–1034. doi:10.1002/adfm.201402930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tarantal AF, Lee CCI, Batchelder CA, Christensen JE, Prater D, Cherry SR (2012) Radiolabeling and in vivo imaging of transplanted renal lineages differentiated from human embryonic stem cells in fetal rhesus monkeys. Mol Imaging Biol 14(2):197–204. doi:10.1007/s11307-011-0487-1

    Article  PubMed Central  PubMed  Google Scholar 

  • Tarantal AF, Lee CCI, Kukis DL, Cherry SR (2013) Radiolabeling human peripheral blood stem cells for positron emission tomography (PET) imaging in young rhesus monkeys. PLoS ONE 8(10). doi:10.1371/journal.pone.0077148

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17(16):6463–6471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson M, Wall DM, Hicks RJ, Prince HM (2005) In vivo tracking for cell therapies. Q J Nucl Med Mol Imaging 49(4):339–348

    CAS  PubMed  Google Scholar 

  • Tian F, Chen GC, Yi PW, Zhang JC, Li AG, Zhang J, Zheng LR, Deng ZW, Shi Q, Peng R, Wang QB (2014) Fates of Fe3O4 and Fe3O4@SiO2 nanoparticles in human mesenchymal stem cells assessed by synchrotron radiation-based techniques. Biomaterials 35(24):6412–6421. doi:10.1016/j.biomaterials.2014.04.052

    Article  CAS  PubMed  Google Scholar 

  • Tong JY, Ding JD, Shen XB, Chen L, Bian YP, Ma GS, Yao YY, Yang F (2013) Mesenchymal stem cell transplantation enhancement in myocardial infarction rat model under ultrasound combined with nitric oxide microbubbles. PLoS ONE 8(11). doi:10.1371/journal.pone.0080186

  • Toyoda KI, Tooyama I, Kato M, Sato H, Morikawa S, Hisa Y, Inubushi T (2004) Effective magnetic labeling of transplanted cells with HVJ-E for magnetic resonance imaging. Neuroreport 15(4):589–593. doi:10.1097/01.wnr.0000118724.3806718

    Article  CAS  PubMed  Google Scholar 

  • Treff NR, Scott RT Jr (2012) Methods for comprehensive chromosome screening of oocytes and embryos: capabilities, limitations, and evidence of validity. J Assist Reprod Genet 29(5):381–390. doi:10.1007/s10815-012-9727-9

    Article  PubMed Central  PubMed  Google Scholar 

  • U.S. National Institutes of Health Clinical trials: mesenchymal stem cell. PUblisher. clinicaltrials.gov. Accessed 31 Apr 2015

  • Van Hemert FJ, Thurlings R, Dohmen SE, Voennansc C, Tak PP, Van Eck-Smit BLF, Bennink RJ (2007) Labeling of autologous monocytes with Tc-99m-HMPAO at very high specific radioactivity. Nucl Med Biol 34(8):933–938. doi:10.1016/j.nucmedbio.2007.07.008

    Article  PubMed  CAS  Google Scholar 

  • van Hensbergen Y, Schipper LF, Brand A, Slot MC, Welling M, Nauta AJ, Fibbe WE (2006) Ex vivo culture of human CD34(+) cord blood cells with thrombopoietin (TPO) accelerates platelet engraftment in a NOD/SCID mouse model. Exp Hematol 34(7):943–950. doi:10.1016/j.exphem.2006.04.009

    Article  PubMed  CAS  Google Scholar 

  • Varani J, DaSilva M, Warner RL, Deming MO, Barron AG, Johnson KJ, Swartz RD (2009) Effects of gadolinium-based magnetic resonance imaging contrast agents on human skin in organ culture and human skin fibroblasts. Invest Radiol 44(2):74–81

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Xu C, Ow H (2013) Commercial nanoparticles for stem cell labeling and tracking. Theranostics 3(8):544–560. doi:10.7150/thno.5634

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Weishaupt D (2014) Wie funktioniert MRI?: Eine Einführung in Physik und Funktionsweise der Magnetresonanzbildgebung. Springer Berlin Heidelberg

  • Weisskoff RM, Zuo CS, Boxerman JL, Rosen BR (1994) Microscopic susceptibility variation and transverse relaxation—theory and experiment. Magn Reson Med 31(6):601–610. doi:10.1002/mrm.1910310605

    Article  CAS  PubMed  Google Scholar 

  • Weizenecker J, Gleich B, Rahmer J, Dahnke H, Borgert J (2009) Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 54(5):L1–L10. doi:10.1088/0031-9155/54/5/l01

    Article  CAS  PubMed  Google Scholar 

  • Welling M, Feitsma HI, Blok D, Calame W, Ensing GJ, Goedemans W, Pauwels EK (1995) A new 99mTc labelling method for leucocytes: in vitro and in vivo comparison with 99mTc-HMPAO. Q J Nucl Med Mol Imaging 39(2):89–98

    CAS  Google Scholar 

  • Welling MM, Duijvestein M, Signore A, Van der Weerd L (2011) In vivo biodistribution of stem cells using molecular nuclear medicine imaging. J Cell Physiol 226(6):1444–1452. doi:10.1002/jcp.22539

    Article  CAS  PubMed  Google Scholar 

  • Wolfs E, Holvoet B, Gijsbers R, Casteels C, Roberts SJ, Struys T, Maris M, Ibrahimi A, Debyser Z, Van Laere K, Verfaillie CM, Deroose CM (2014) Optimization of multimodal imaging of mesenchymal stem cells using the human sodium iodide symporter for PET and Cerenkov luminescence imaging. PLoS ONE 9(4). doi:10.1371/journal.pone.0094833

  • Wu C, Li JG, Pang PF, Liu JJ, Zhu KS, Li D, Cheng D, Chen JW, Shuai XT, Shan H (2014) Polymeric vector-mediated gene transfection of MSCs for dual bioluminescent and MRI tracking in vivo. Biomaterials 35(28):8249–8260. doi:10.1016/j.biomaterials.2014.06.014

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Gurney PT, Chung J, Kundu P, Drukker M, Smith AK, Weissman IL, Nishimura D, Robbins RC, Yang PC (2009) Manganese-guided cellular MRI of human embryonic stem cell and human bone marrow stromal cell viability. Magn Reson Med 62(4):1047–1054. doi:10.1002/mrm.22071

    Article  CAS  PubMed  Google Scholar 

  • Zhang RP, Li J, Li JD, Xie J (2014) Efficient In vitro labeling rabbit bone marrow-derived mesenchymal stem cells with SPIO and differentiating into neural-like cells. Mol Cells 37(9):650–655

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhen Z, Xie J (2012) Development of manganese-based nanoparticles as contrast probes for magnetic resonance imaging. Theranostics 2(1):45–54. doi:10.7150/thno.3448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been carried out as an integral part of the BIOFABRICATION FOR NIFE Initiative, which is financially supported by the ministry of Lower Saxony and the VolkswagenStiftung. (NIFE is the Lower Saxony Center for Biomedical Engineering, Implant Research and Development, a joint translational research center of the Hannover Medical School, the Leibniz University Hannover, the University of Veterinary Medicine Hannover, and the Laser Center Hannover.)

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. von der Haar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von der Haar, K., Lavrentieva, A., Stahl, F. et al. Lost signature: progress and failures in in vivo tracking of implanted stem cells. Appl Microbiol Biotechnol 99, 9907–9922 (2015). https://doi.org/10.1007/s00253-015-6965-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6965-7

Keywords

Navigation