Skip to main content

Advertisement

Log in

Molecular characterization of major histocompatibility complex class II alleles in wild tiger salamanders (Ambystoma tigrinum)

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Major histocompatibility complex (MHC) class II genes are usually among the most polymorphic in vertebrate genomes because of their critical role (antigen presentation) in immune response. Prior to this study, the MHC was poorly characterized in tiger salamanders (Ambystoma tigrinum), but the congeneric axolotl (Ambystoma mexicanum) is thought to have an unusual MHC. Most notably, axolotl class II genes lack allelic variation and possess a splice variant without a full peptide binding region (PBR). The axolotl is considered immunodeficient, but it is unclear how or to what extent MHC genetics and immunodeficiency are interrelated. To study the evolution of MHC genes in urodele amphibians, we describe for the first time an expressed polymorphic class II gene in wild tiger salamanders. We sequenced the PBR of a class II gene from wild A. tigrinum (n=33) and identified nine distinct alleles. Observed heterozygosity was 73%, and there were a total of 46 polymorphic sites, most of which correspond to amino acid positions that bind peptides. Patterns of nucleotide substitutions exhibit the signature of diversifying selection, but no recombination was detected. Not surprisingly, transspecies evolution of tiger salamander and axolotl class II alleles was apparent. We have no direct data on the immunodeficiency of tiger salamanders, but the levels of polymorphism in our study population should suffice to bind a variety of foreign peptides (unlike axolotls). Our tiger salamander data suggest that the monomorphism and immunodeficiencies associated with axolotl class II genes is a relict of their unique historical demography, not their phylogenetic legacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas AK, Lichtman AH, Pober JS (2000) Cellular and molecular immunology. W.B. Saunders, Philadelphia

    Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography. The history and formation of species. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Bos DH, Posada D (2005) Using models of nucleotide evolution to build phylogenetic trees. Dev Comp Immunol 29:211–227

    Article  PubMed  CAS  Google Scholar 

  • Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39

    Article  PubMed  CAS  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information–theoretic approach. Springer-Verlag, New York

    Google Scholar 

  • Collins JP (1981) Distribution, habitats and life history variation in the tiger salamander, Ambystoma tigrinum, in east-central and southeast Arizona. Copeia 1981:666–675

    Article  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  CAS  Google Scholar 

  • Flajnik MF, Ohta Y, Greenberg AS, Salter-Cid L, Carrizosa A, Du Pasquier L, Kasahara M (1999) Two ancient allelic lineages at the single classical class I locus in the Xenopus MHC. J Immunol 163:3826–3833

    PubMed  CAS  Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy–Weinberg proportions for multiple alleles. Biometrics 48:361–372

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen IB, Wilson SR, Easteal S (1998) Patterns of reticulate evolution for the classical class I and II HLA loci. Immunogenetics 48:312–323

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J, Salomonsen J, Flajnik MF (1994) Evolutionary conservation of MHC class I and class II molecules—different yet the same. Semin Immunol 6:411–424

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J, Volk H, Wallny HJ (1995) A “minimal essential Mhc” and an “unrecognized Mhc”: two extremes in selection for polymorphism. Immunol Rev 143:63–88

    Article  PubMed  CAS  Google Scholar 

  • Kelley L, Walter J, Trowsdale J (2005) Comparative genomics of major histocompatibility complexes. Immunogenetics 56:683–695

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Ohta T (1969) The average number of generations until fixation of a mutant gene in a finite population. Genetics 61:763–771

    PubMed  Google Scholar 

  • Laurens V, Chapusot C, del Rosario Ordonez M, Bentrari F, Rosa Padros M, Tournefier A (2001) Axolotl MHC class II β chain: predominance of one allele and alternative splicing of the β1 domain. Eur J Immunol 31:506–515

    Article  PubMed  CAS  Google Scholar 

  • Martin D, Rybicki E (2000) RDP: detection of recombination amongst aligned sequences. Bioinformatics 16:562–563

    Article  PubMed  CAS  Google Scholar 

  • Matis LA, Glimcher LH, Paul WE, Schwartz RH (1983) Magnitude of response of histocompatibility-restricted T-cell clones is a function of the product of the concentrations of antigen and Ia molecules. Proc Natl Acad Sci U S A 80:6019–6023

    Article  PubMed  CAS  Google Scholar 

  • Petranka J (1998) Salamanders of the United States and Canada. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175

    Article  PubMed  CAS  Google Scholar 

  • Salter-Cid L, Flajnik MF (1995) Evolution and developmental regulation of the major histocompatibility complex. Crit Rev Immunol 15:31–75

    PubMed  CAS  Google Scholar 

  • Sambrook E, Fritsch F, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Press, Cold Spring, NY

    Google Scholar 

  • Sammut B, Laurens V, Tournefier A (1997) Isolation of Mhc class I cDNAs from the axolotl Ambystoma mexicanum. Immunogenetics 45:285–294

    Article  PubMed  CAS  Google Scholar 

  • Sammut B, Du Pasquier L, Ducoroy P, Laurens V, Marcuz A, Tournefier A (1999) Axolotl MHC architecture and polymorphism. Eur J Immunol 29:2897–2907

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Flajnik MF, Du Pasquier L, Katagiri M, Kasahara M (1993) Evolution of the MHC: isolation of class II B-chain cDNA clones from the amphibian Xenopus laevis. J Immunol 50:2831–2843

    Google Scholar 

  • Shaffer HB (1984) Evolution in a paedomorphic lineage. I. An electrophoretic analysis of the Mexican ambystomatid salamanders. Evolution 38:1194–1206

    Article  Google Scholar 

  • Shaffer HB, McKnight ML (1996) The polytypic species revisited: genetic differentiation and molecular phylogenetics of the tiger salamander Ambystoma tigrinum (Amphibia: Caudata) complex. Evolution 50:417–433

    Article  CAS  Google Scholar 

  • Tompkins R (1978) Genic control of axolotl metamorphosis. Am Zool 18:313–319

    CAS  Google Scholar 

  • Tournefier A, Laurens V, Chapusot C, Ducoroy P, Padros MR, Salvadori F, Sammut B (1998) Structure of MHC class I and class II cDNAs and possible immunodeficiency linked to class II expression in the Mexican axolotl. Immunol Rev 166:259–277

    Article  PubMed  CAS  Google Scholar 

  • Williams RN, DeWoody JA (2004) Fluorescent dUTP helps characterize 10 novel tetranucleotide microsatellites from an enriched salamander (Ambystoma texanum) genomic library. Mol Ecol Notes 4:17–19

    Article  CAS  Google Scholar 

  • Wu TT, Kabat EA (1970) An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complimentarity. J Exp Med 132:211–250

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (1994) Maximum likelihood phylogenetic estimation of DNA sequences with variable rates over sites: approximate methods. J Mol Evol 39:306–314

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (2000) Phylogenetic analysis by maximum likelihood (PAML). University College London, London

    Google Scholar 

  • Yang Z, Nielsen R, Goldman N, Pedersen A-MK (2000) Codon substitution models for heterogeneous selection pressure and amino acid sites. Genetics 155:431–449

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the DeWoody laboratory group members and anonymous reviewers for suggestions that have improved this manuscript. In particular, we thank Cory McCormick and Rod Williams for their assistance. This work is contribution number ARP 2005-17611 from Purdue University and was funded in part by the USDA (NRI-2003-03616) and the NSF (DEB-0514815).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Bos.

Electronic supplementary material

Fig. S1

Alignment of salamander class II DAB nucleotide sequences. The 5 longer sequences are derived from cDNA purified from fresh adult and larval spleen and larval gill tissue. Complete tiger salamander (Ambystoma tigrinum) sequences include partial 5′ and 3′ untranslated regions, and the entire coding region of the gene; these represent full-length mRNA transcripts of the gene locus. One sequence from the tiger salamander (Amti-DAB.019s) represents the alternately spliced transcript of the same locus that lacks the polymorphic β1 domain. The 264 nt sequence are derived from genomic DNA using primers designed to capture variation at the β1 domain of the DAB locus. These represent allelic polymorphism of samples from a single location. For comparative purposes,sequence from the orthologous DAB locus of the axolotl (A. mexicanum) is included. Dots represent identical nucleotides to the top reference sequence, dashes represent gapsor missing data (PDF 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bos, D.H., DeWoody, J.A. Molecular characterization of major histocompatibility complex class II alleles in wild tiger salamanders (Ambystoma tigrinum). Immunogenetics 57, 775–781 (2005). https://doi.org/10.1007/s00251-005-0038-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-005-0038-5

Keywords

Navigation