Skip to main content

Advertisement

Log in

Effects of SLCO1B1 polymorphisms on the pharmacokinetics and pharmacodynamics of repaglinide in healthy Chinese volunteers

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Repaglinide is commonly used in the treatment of patients with type 2 diabetes mellitus to reduce postprandial hyperglycemia. The objective of this research was to study the effects of SLCO1B1 polymorphisms on the pharmacokinetics and pharmacodynamics of repaglinide in healthy Chinese volunteers.

Methods

A total of 22 healthy young male participants were recruited from a pool of pharmacogenetically characterized participants genotyped for SLCO1B1, CYP3A4, and CYP2C8 SNPs by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Volunteers with CYP2C8*3 and CYP3A4*4 alleles were excluded from the clinical study. Then selected volunteers took part in the clinical pharmacokinetic study, receiving 2 mg repaglinide.

Results

Healthy participants with SLCO1B1*1A/*1B or *1A/*1A genotype and SLCO1B1 *15/*1A or *5/*1A genotype had significantly higher AUC0-∞ than participants with SLCO1B1*1B/*1B genotype, with the former showing an increase over the latter of 39.81 and 42.09%, respectively (P = 0.028, 0.032). The clearance in the former two genotype groups was significantly attenuated (by 27.39 and 28.55%, respectively) compared with individuals with SLCO1B1*1B/*1B genotype (P = 0.015, 0.019). No significant differences in blood glucose-lowering effect were observed among three genotype groups.

Conclusions

SLCO1B1*1B/*1B genotype is associated with reduced pharmacokinetic exposure after a single dose oral administration of 2 mg repaglinide, including decreased AUC0-∞ and increased clearance of repaglinide. Moreover, this polymorphism of SLCO1B1 has significant influence on the pharmacokinetics of repaglinide, but no effects on its pharmacodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

SLCO1B1 :

The encoding gene of the human organic anion-transporting polypeptides OATP1B1

CYP2C8 :

Cytochrome P-450 2C8 gene

CYP3A4 :

Cytochrome P-450 3A4 gene

SNPs:

Single nucleotide polymorphisms

Cmax :

Peak plasma concentration

AUC0-8 :

Area under plasma concentration-time curve from 0 to 8 h

AUC0-∞ :

Area under plasma concentration-time curve from 0 to infinity

Tmax :

Time to Cmax

T1/2 :

Elimination half-life

CL:

Clearance

AAC0-3h :

Area above blood glucose level-time curve from 0 to 3 h

NS:

Nonsignificant

T2D:

Type 2 diabetes

References

  1. Hatorp V (2002) Clinical pharmacokinetics and pharmacodynamics of repaglinide. Clin Pharmacokinet 41:471–483

    Article  PubMed  CAS  Google Scholar 

  2. Plum A, Müller LK, Jansen JA (2000) The effects of selected drugs on the in vitro protein binding of repaglinide in human plasma. Methods Find Exp Clin Pharmacol 22:139–143

    PubMed  CAS  Google Scholar 

  3. Hatorp V, Oliver S, Su CA (1998) Bioavailability of repaglinide, a novel antidiabetic agent, administered orally in tablet or solution form or intravenously in healthy male volunteers. Int J Clin Pharmacol Ther 36:636–641

    PubMed  CAS  Google Scholar 

  4. König J, Cui Y, Nies AT, Keppler D (2000) A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am J Physiol Gastrointest Liver Physiol 278:156–164

    Google Scholar 

  5. Bidstrup TB, Bjørnsdottir I, Sidelmann UG, Thomsen MS, Hansen KT (2003) CYP2C8 and CYP3A4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide. Br J Clin Pharmacol 56:305–314

    Article  PubMed  CAS  Google Scholar 

  6. Michalski C, Cui Y, Nies AT, Nuessler AK, Neuhaus P, Zanger UM, Klein K, Eichelbaum M, Keppler D, Konig J (2002) A naturally occurring mutation in the SLC21A6 gene causing impaired membrane localization of the hepatocyte uptake transporter. J Biol Chem 277:43058–43063

    Article  PubMed  CAS  Google Scholar 

  7. Kameyama Y, Yamashita K, Kobayashi K, Hosokawa M, Chiba K (2005) Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15 + C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet Genomics 15:513–522

    Article  PubMed  CAS  Google Scholar 

  8. Niemi M (2007) Role of OATP transporters in the disposition of drugs. Pharmacogenomics 8:787–802

    Article  PubMed  CAS  Google Scholar 

  9. Kalliokoski A, Neuvonen PJ, Niemi M (2010) SLCO1B1 polymorphism and oral antidiabetic drugs. Basic Clin Pharmacol Toxicol 107:775–781

    Article  PubMed  CAS  Google Scholar 

  10. Tirona RG, Leake BF, Merino G, Kim RB (2001) Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J Biol Chem 276:35669–35675

    Article  PubMed  CAS  Google Scholar 

  11. Nozawa T, Nakajima M, Tamai I, Noda K, Nezu J, Sai Y, Tsuji A, Yokoi T (2002) Genetic polymorphisms of human organic anion transporters OATP-C (SLC21A6) and OATP-B (SLC21A9): allele frequencies in the Japanese population and functional analysis. J Pharmacol Exp Ther 302:804–813

    Article  PubMed  CAS  Google Scholar 

  12. Niemi M, Schaeffeler E, Lang T, Fromm MF, Neuvonen M, Kyrklund C, Backman JT, Kerb R, Schwab M, Neuvonen PJ, Eichelbaum M, Kivistö KT (2004) High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics 14:429–440

    Article  PubMed  CAS  Google Scholar 

  13. Kalliokoski A, Backman JT, Neuvonen PJ, Niemi M (2008) Effects of the SLCO1B1*1B haplotype on the pharmacokinetics and pharmacodynamics of repaglinide and nateglinide. Pharmacogenet Genomics 18:937–942

    Article  PubMed  CAS  Google Scholar 

  14. Pasanen MK, Neuvonen PJ, Niemi M (2008) Global analysis of genetic variation in SLCO1B1. Pharmacogenomics 9:19–33

    Article  PubMed  CAS  Google Scholar 

  15. Xu LY, He YJ, Zhang W, Deng S, Li Q, Zhang WX, Liu ZQ, Wang D, Huang YF, Zhou HH, Sun ZQ (2007) Organic anion transporting polypeptide-1B1 haplotypes in Chinese patients. Acta Pharmacol Sin 28:1693–1697

    Article  PubMed  Google Scholar 

  16. Niemi M, Backman JT, Kajosaari LI, Leathart JB, Neuvonen M, Daly AK, Eichelbaum M, Kivistö KT, Neuvonen PJ (2005) Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin Pharmacol Ther 77:468–478

    Article  PubMed  CAS  Google Scholar 

  17. Kalliokoski A, Neuvonen M, Neuvonen PJ, Niemi M (2008) Different effects of SLCO1B1 polymorphism on the pharmacokinetics and pharmacodynamics of repaglinide and nateglinide. J Clin Pharmacol 48:311–321

    Article  PubMed  CAS  Google Scholar 

  18. Niemi M, Leathart JB, Neuvonen M, Backman JT, Daly AK, Neuvonen PJ (2003) Polymorphism in CYP2C8 is associated with reduced plasma concentrations of repaglinide. Clin Pharmacol Ther 74:380–387

    Article  PubMed  CAS  Google Scholar 

  19. Wen J, Xiong Y (2010) OATP1B1 388A > G polymorphism and pharmacokinetics of pitavastatin in Chinese healthy volunteers. J Clin Pharm Ther 35:99–104

    Article  PubMed  CAS  Google Scholar 

  20. Ruzilawati AB, Suhaimi AW, Gan SH (2007) Genetic polymorphisms of CYP3A4:CYP3A4*18 allele is found in five healthy Malaysian subjects. Clin Chim Acta 383:158–162

    Article  PubMed  CAS  Google Scholar 

  21. Yu M, Xu XJ, Yin JY, Wu J, Chen X, Gong ZC, Ren HY, Huang Q, Sheng FF, Zhou HH, Liu ZQ (2010) KCNJ11 Lys23Glu and TCF7L2 rs290487(C/T) polymorphisms affect therapeutic efficacy of repaglinide in Chinese patients with type 2 diabetes. Clin Pharmacol Ther 87:330–335

    Article  PubMed  CAS  Google Scholar 

  22. He J, Zhou W, Wang LC, He TT, Wang D, Fan L, Zhang W, Zhou HH (2009) Genetic polymorphisms of CYP2C8 and CYP2C9 in Chinese type 2 diabetes mellitus. Chin J Clin Pharmacol Ther 14:300–306

    Google Scholar 

  23. Niemi M, Backman JT, Neuvonen M, Neuvonen PJ, Kivistö KT (2000) Rifampin decreases the plasma concentrations and effects of repaglinide. Clin Pharmacol Ther 68:495–500

    Article  PubMed  CAS  Google Scholar 

  24. Wang M, Miksa IR (2007) Multi-component plasma quantitation of anti-hyperglycemic pharmaceutical compounds using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 856:318–327

    Article  PubMed  CAS  Google Scholar 

  25. Iwai M, Suzuki H, Ieiri I, Otsubo K, Sugiyama Y (2004) Functional analysis of single nucleotide polymorphisms of hepatic organic anion transporter OATP1B1 (OATP-C). Pharmacogenetics 14:749–757

    Article  PubMed  CAS  Google Scholar 

  26. Kalliokoski A, Neuvonen M, Neuvonen PJ, Niemi M (2008) The effect of SLCO1B1 polymorphism on repaglinide pharmacokinetics persists over a wide dose range. Br J Clin Pharmacol 66:818–825

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the 863 Hi-tech Program of China (No. 2007AA02Z171).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongwei Fan or Xijing Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Qiu, Z., Li, N. et al. Effects of SLCO1B1 polymorphisms on the pharmacokinetics and pharmacodynamics of repaglinide in healthy Chinese volunteers. Eur J Clin Pharmacol 67, 701–707 (2011). https://doi.org/10.1007/s00228-011-0994-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-011-0994-7

Keywords

Navigation