Skip to main content

Advertisement

Log in

Exogenously induced brain activation regulates neuronal activity by top-down modulation: conceptualized model for electrical brain stimulation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Physiological and exogenous factors are able to adjust sensory processing by modulating activity at different levels of the nervous system hierarchy. Accordingly, transcranial direct current stimulation (tDCS) may use top-down mechanisms to control the access for incoming information along the neuroaxis. To test the hypothesis that brain activation induced by tCDS is able to initiate top-down modulation and that chronic stress disrupts this effect, 60-day-old male Wistar rats (n = 78) were divided into control; control + tDCS; control + sham-tDCS; stress; stress + tDCS; and stress + sham-tDCS. Chronic stress was induced using a restraint stress model for 11 weeks, and then, the treatment was applied over 8 days. BDNF levels were used to assess neuronal activity at spinal cord, brainstem, and hippocampus. Mechanical pain threshold was assessed by von Frey test immediately and 24 h after the last tDCS-intervention. tDCS was able to decrease BDNF levels in the structures involved in the descending systems (spinal cord and brainstem) only in unstressed animals. The treatment was able to reverse the stress-induced allodynia and to increase the pain threshold in unstressed animals. Furthermore, there was an inverse relation between pain sensitivity and spinal cord BDNF levels. Accordingly, we propose the addition of descending systems in the current brain electrical modulation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ablin JN et al (2010) A tale of two cities—the effect of low intensity conflict on prevalence and characteristics of musculoskeletal pain and somatic symptoms associated with chronic stress. Clin Exp Rheumatol 28(6 Suppl 63):S15–S21

    CAS  PubMed  Google Scholar 

  • Ahveninen J et al (2006) Task-modulated “what” and “where” pathways in human auditory cortex. Proc Natl Acad Sci USA 103(39):14608–14613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brunoni AR et al (2014) Enhancement of affective processing induced by bifrontal transcranial direct current stimulation in patients with major depression. Neuromodulation 17(2):138–142

  • Amantea B et al (2000) Neuronal plasticity and neuropathic pain. Minerva Anestesiol 66(12):901–911

    CAS  PubMed  Google Scholar 

  • Amaral FA et al (2008) Commensal microbiota is fundamental for the development of inflammatory pain. Proc Natl Acad Sci USA 105(6):2193–2197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhide AA et al (2013) Biomarkers in overactive bladder. Int Urogynecol J 24(7):1065–1072

    Article  PubMed  Google Scholar 

  • Coull JA et al (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438(7070):1017–1021

    Article  CAS  PubMed  Google Scholar 

  • Dougherty KD, Dreyfus CF, Black IB (2000) Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury. Neurobiol Dis, Part B 7(6):574–585

    Article  CAS  Google Scholar 

  • Faggin BM, Nguyen KT, Nicolelis MA (1997) Immediate and simultaneous sensory reorganization at cortical and subcortical levels of the somatosensory system. Proc Natl Acad Sci USA 94(17):9428–9433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Finsterwald C, Alberini CM (2014) Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies. Neurobiol Learn Mem 112:17–29

    Article  CAS  PubMed  Google Scholar 

  • Floyd NS, Price JL, Ferry AT, Keay KA, Bandler R (2000) Orbitomedial prefrontal cortical projections to distinct longitudinal columns of the periaqueductal gray in the rat. J Comp Neurol 422(4):556–578

    Article  CAS  PubMed  Google Scholar 

  • Fregni F, Pascual-Leone A (2007) Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol 3(7):383–393

    Article  PubMed  Google Scholar 

  • Fregni F, Gimenes R, Valle AC, Ferreira MJ, Rocha RR, Natalle L, Bravo R, Rigonatti SP, Freedman SD, Nitsche MA, Pascual-Leone A, Boggio PS (2006) A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis Rheum 54(12):3988–3998

    Article  PubMed  Google Scholar 

  • Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, Lu B (2010) Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66(2):198–204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fukuoka T, Kondo E, Dai Y, Hashimoto N, Noguchi K (2001) Brain-derived neurotrophic factor increases in the uninjured dorsal root ganglion neurons in selective spinal nerve ligation model. J Neurosci 21(13):4891–4900

    CAS  PubMed  Google Scholar 

  • Gandiga PC, Hummel FC, Cohen LG (2006) Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol 117(4):845–850

    Article  PubMed  Google Scholar 

  • Hardy SG, Leichnetz GR (1981) Frontal cortical projections to the periaqueductal gray in the rat: a retrograde and orthograde horseradish peroxidase study. Neurosci Lett 23(1):13–17

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K (2010) Brain-derived neurotrophic factor as a biomarker for mood disorders: an historical overview and future directions. Psychiatry Clin Neurosci 64(4):341–357

    Article  CAS  PubMed  Google Scholar 

  • Hayes RL, Dubner R, Hoffman DS (1981) Neuronal activity in medullary dorsal horn of awake monkeys trained in a thermal discrimination task. II. Behavioral modulation of responses to thermal and mechanical stimuli. J Neurophysiol 46(3):428–443

    CAS  PubMed  Google Scholar 

  • Heinricher MM, Tavares I, Leith JL, Lumb BM (2009) Descending control of nociception: specificity, recruitment and plasticity. Brain Res Rev 60(1):214–225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hunter MA, Coffman BA, Trumbo MC, Clark VP (2013) Tracking the neuroplastic changes associated with transcranial direct current stimulation: a push for multimodal imaging. Front Hum Neurosci 7:495

    PubMed Central  PubMed  Google Scholar 

  • Koyama T, McHaffie JG, Laurienti PJ, Coghill RC (2005) The subjective experience of pain: where expectations become reality. Proc Natl Acad Sci USA 102:12950–12955

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kurita M, Nishino S, Kato M, Numata Y, Sato T (2012) Plasma brain-derived neurotrophic factor levels predict the clinical outcome of depression treatment in a naturalistic study. PLoS One 7(6):e39212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Laste G, Caumo W, Adachi LN, Rozisky JR, de Macedo IC, Filho PR, Partata WA, Fregni F, Torres IL (2012) After-effects of consecutive sessions of transcranial direct current stimulation (tDCS) in a rat model of chronic inflammation. Exp Brain Res 221(1):75–83

    Article  PubMed  Google Scholar 

  • Lautenbacher S, Rollman GB (1997) Possible deficiencies of pain modulation in fibromyalgia. Clin J Pain 13(3):189–916

    Article  CAS  PubMed  Google Scholar 

  • Liebano RE, Vance CG, Rakel BA, Lee JE, Cooper NA, Marchand S, Walsh DM, Sluka KA (2013) Transcutaneous electrical nerve stimulation and conditioned pain modulation influence the perception of pain in humans. Eur J Pain 17(10):1539–1546

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liebetanz D, Klinker F, Hering D, Koch R, Nitsche MA, Potschka H, Löscher W, Paulus W, Tergau F (2006) Anticonvulsant effects of transcranial direct-current stimulation (tDCS) in the rat cortical ramp model of focal epilepsy. Epilepsia 47(7):1216–1224

    Article  PubMed  Google Scholar 

  • Liebetanz D, Koch R, Mayenfels S, König F, Paulus W, Nitsche MA (2009) Safety limits of cathodal transcranial direct current stimulation in rats. Clin Neurophysiol 120(6):1161–1167

    Article  PubMed  Google Scholar 

  • Lima MC, Fregni F (2008) Motor cortex stimulation for chronic pain: systematic review and meta-analysis of the literature. Neurology 70(24):2329–2337

    Article  PubMed  Google Scholar 

  • Lu LX, Yon JH, Carter LB, Jevtovic-Todorovic V (2006) General anesthesia activates BDNF-dependent neuroapoptosis in the developing rat brain. Apoptosis 11(9):1603–1615

    Article  CAS  PubMed  Google Scholar 

  • Ma QP, Woolf CJ (1996) Progressive tactile hypersensitivity: an inflammation-induced incremental increase in the excitability of the spinal cord. Pain 67(1):97–106

    Article  CAS  PubMed  Google Scholar 

  • Malenka RC, Nicoll RA (1999) Long-term potentiation—a decade of progress? Science 285(5435):1870–1874 ISSN 0036-8075

    Article  CAS  PubMed  Google Scholar 

  • Mcadams CJ, Maunsell JH (1999) Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J Neurosci 19(1):431–441

    CAS  PubMed  Google Scholar 

  • Medeiros LF, de Souza IC, Vidor LP, de Souza A, Deitos A, Volz MS, Fregni F, Caumo W, Torres IL (2012) Neurobiological effects of transcranial direct current stimulation: a review. Front Psychiatry 3:110. doi:10.3389/fpsyt.2012.00110 (eCollection 2012)

    Article  PubMed Central  PubMed  Google Scholar 

  • Mendonca ME, Santana MB, Baptista AF, Datta A, Bikson M, Fregni F, Araujo CP (2011) Transcranial DC stimulation in fibromyalgia: optimized cortical target supported by high-resolution computational models. J Pain 12(5):610–617

    Article  PubMed  Google Scholar 

  • Meng ID, Harasawa I (2007) Chronic morphine exposure increases the proportion of on-cells in the rostral ventromedial medulla in rats. Life Sci 80(20):1915–1920

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Merighi A, Salio C, Ghirri A, Lossi L, Ferrini F, Betelli C, Bardoni R (2008) BDNF as a pain modulator. Prog Neurobiol 85(3):297–317 (ISSN 0301-0082)

    Article  CAS  PubMed  Google Scholar 

  • Nekhendzy V, Fender CP, Davies MF, Lemmens HJ, Kim MS, Bouley DM, Maze M (2004) The antinociceptive effect of transcranial electrostimulation with combined direct and alternating current in freely moving rats. Anesth Analg 98(3):730–737

    Article  PubMed  Google Scholar 

  • Netto CA, Siegfried B, Izquierdo I (1987) Analgesia induced by exposure to a novel environment in rats: effect of concurrent and post-training stressful stimulation. Behav Neural Biol 48(2):304–309

    Article  CAS  PubMed  Google Scholar 

  • Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(3):633–639 (ISSN 0022-3751)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nitsche MA, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, Lang N, Henning S, Tergau F, Paulus W (2003) Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol 553(1):293–301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nitsche MA, Liebetanz D, Schlit-terlau A, Henschke U, Fricke K, Frommann K et al (2004) GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans. Eur J Neurosci 19:2720–2726

    Article  PubMed  Google Scholar 

  • Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, Hummel F, Boggio PS, Fregni F, Pascual-Leone A (2008) Transcranial direct current stimulation: state of the art 2008. Brain Stimul 1(3):206–223

    Article  PubMed  Google Scholar 

  • Nurjono M, Lee J, Chong SA (2013) A review of brain-derived neurotrophic factor as a candidate biomarker in schizophrenia. Clin Psychopharmacol Neurosci 10(2):61–70

    Article  Google Scholar 

  • Oshiro Y, Quevedo AS, McHaffie JG, Kraft RA, Coghill RC (2009) Brain mechanisms supporting discrimination of sensory features of pain: a new model. J Neurosci 29(47):14924–14931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ouyang W, Hemmings HC Jr (2005) Depression by isoflurane of the action potential and underlying voltage-gated ion currents in isolated rat neurohypophysial nerve terminals. J Pharmacol Exp Ther 312(2):801–808

    Article  CAS  PubMed  Google Scholar 

  • Oyadeyi AS, Ajao FO, Ibironke GF, Afolabi AO (2005) Acute restraint stress induces hyperalgesia via non-adrenergic mechanisms in rats. Afr J Biomed Res 8:123–125

    Google Scholar 

  • Pettit MJ, Schwark HD (1993) Receptive field reorganization in dorsal column nuclei during temporary denervation. Science 262(5142):2054–2056

    Article  CAS  PubMed  Google Scholar 

  • Price DD, Hayes RL, Ruda M, Dubner R (1978) Spatial and temporal transformations of input to spinothalamic tract neurons and their relation to somatic sensations. J Neurophysiol 41(4):933–947

    CAS  PubMed  Google Scholar 

  • Purpura DP, Mcmurtry JG (1965) Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol 28:166–185

    CAS  PubMed  Google Scholar 

  • Quevedo AS, Coghill RC (2007a) An illusion of proximal radiation of pain due to distally directed inhibition. J Pain 8(3):280–286

    Article  PubMed  Google Scholar 

  • Quevedo AS, Coghill RC (2007b) Attentional modulation of spatial integration of pain: evidence for dynamic spatial tuning. J Neurosci 27(43):11635–11640

    Article  CAS  PubMed  Google Scholar 

  • Quevedo AS, Coghill RC (2009) Filling-in, spatial summation, and radiation of pain: evidence for a neural population code in the nociceptive system. J Neurophysiol 102(6):3544–3553

    Article  PubMed Central  PubMed  Google Scholar 

  • Ranieri F, Podda MV, Riccardi E, Frisullo G, Dileone M, Profice P, Pilato F, Di Lazzaro V, Grassi C (2012) Modulation of LTP at rat hippocampal CA3–CA1 synapses by direct current stimulation. J Neurophysiol 107(7):1868–1880

    Article  CAS  PubMed  Google Scholar 

  • Salinas E, Abbott LF (1997) Invariant visual responses from attentional gain fields. J Neurophysiol 77(6):3267–3272

    CAS  PubMed  Google Scholar 

  • Sauro KM, Becker WJ (2009) The stress and migraine interaction. Headache 49(9):1378–1386

    Article  PubMed  Google Scholar 

  • Shu XQ, Llinas A, Mendell LM (1999) Effects of trkB and trkC neurotrophin receptor agonists on thermal nociception: a behavioral and electrophysiological study. Pain 80(3):463–470 (ISSN 0304-3959)

    Article  CAS  PubMed  Google Scholar 

  • Silvetti M, Alexander W, Verguts T, Brown JW (2014) From conflict management to reward-based decision making: Actors and critics in primate medial frontal cortex. Neurosci Biobehav Rev 1:44–57

  • Spezia Adachi LN, Caumo W, Laste G, Fernandes Medeiros L, Ripoll Rozisky J, de Souza A, Fregni F, Torres IL (2012) Reversal of chronic stress-induced pain by transcranial direct current stimulation (tDCS) in an animal model. Brain Res 1489:17–26

    Article  CAS  PubMed  Google Scholar 

  • Spruston N, Cang J (2010) Timing isn’t everything. Nat Neurosci 13(3):277–279 (ISSN 1546-1726)

    Article  CAS  PubMed  Google Scholar 

  • Staud R, Robinson ME, Vierck CJ Jr, Price DD (2003) Diffuse noxious inhibitory controls (DNIC) attenuate temporal summation of second pain in normal males but not in normal females or fibromyalgia patients. Pain 101(1–2):167–174

    Article  PubMed  Google Scholar 

  • Valet M, Sprenger T, Boecker H, Willoch F, Rummeny E, Conrad B, Erhard P, Tolle TR (2004) Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain—an fMRI analysis. Pain 109(3):399–408

    Article  PubMed  Google Scholar 

  • Vivancos GG, Verri WA Jr, Cunha TM, Schivo IR, Parada CA, Cunha FQ, Ferreira SH (2004) An electronic pressure-meter nociception paw test for rats. Braz J Med Biol Res 37(3):391–399

    Article  CAS  PubMed  Google Scholar 

  • Voss MW, Erickson KI, Prakash RS, Chaddock L, Kim JS, Alves H, Szabo A, Phillips SM, Wójcicki TR, Mailey EL, Olson EA, Gothe N, Vieira-Potter VJ, Martin SA, Pence BD, Cook MD, Woods JA, McAuley E, Kramer AF (2012) Neurobiological markers of exercise-related brain plasticity in older adults. Brain Behav Immun 28:90–99

    Article  PubMed Central  PubMed  Google Scholar 

  • Wachter D, Wrede A, Schulz-Schaeffer W, Taghizadeh-Waghefi A, Nitsche MA, Kutschenko A, Rohde V, Liebetanz D (2010) Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat. Exp Neurol 227(2):322–327

    Article  PubMed  Google Scholar 

  • Walker SM, Mitchell VA, White DM, Rush RA, Duggan AW (2001) Release of immunoreactive brain-derived neurotrophic factor in the spinal cord of the rat following sciatic nerve transection. Brain Res 899(1–2):240–247 (ISSN 0006-8993)

    Article  CAS  PubMed  Google Scholar 

  • Yajima Y, Narita M, Usui A, Kaneko C, Miyatake M, Narita M, Yamaguchi T, Tamaki H, Wachi H, Seyama Y, Suzuki T (2005) Direct evidence for the involvement of brain-derived neurotrophic factor in the development of a neuropathic pain-like state in mice. J Neurochem 93(3):584–594

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Wang X, Wang W, Lu YG, Pan ZZ (2013) Brain-derived neurotrophic factor-mediated downregulation of brainstem K+–Cl cotransporter and cell-type-specific GABA impairment for activation of descending pain facilitation. Mol Pharmacol 84(4):511–520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou LJ, Yang T, Wei X, Liu Y, Xin WJ, Chen Y, Pang RP, Zang Y, Li YY, Liu XG (2010) Brain-derived neurotrophic factor contributes to spinal long-term potentiation and mechanical hypersensitivity by activation of spinal microglia in rat. Brain Behav Immun 25(2):322–334

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the following Brazilian funding agencies: the National Council for Scientific and Technological Development-CNPq (Dr. I. L. S. Torres, Dr. W. Caumo, V. L. Scarabelot), the Foundation of Support of Research of Rio Grande do Sul, FAPERGS/PRONEM (ILS Torres–Grant 11/2050), the Graduate Research Group (GPPG) of Hospital de Clínicas de Porto Alegre-HCPA (I. L. S. Torres–Grant 100381), the Committee for the Development of Higher Education Personnel-CAPES (J. R. Rozisky, L. N. S. Adachi, L. F. Medeiros, C. Oliveira, A. C. de Souza), and Grant Doc-Fix FAPERGS/CAPES/09-2012 (A. S. Quevedo). We also want to thank to engineering from the HCPA for have developed the tDCS stimulator.

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iraci L. S. Torres.

Additional information

Lauren Naomi Spezia Adachi and Alexandre Silva Quevedo have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spezia Adachi, L.N., Quevedo, A.S., de Souza, A. et al. Exogenously induced brain activation regulates neuronal activity by top-down modulation: conceptualized model for electrical brain stimulation. Exp Brain Res 233, 1377–1389 (2015). https://doi.org/10.1007/s00221-015-4212-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4212-1

Keywords

Navigation