Skip to main content
Log in

Analyte and matrix evaporability – key players of low-temperature plasma ionization for ambient mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The introduction of ambient ionization at atmospheric pressure for mass spectrometry (AI-MS) attracted the interest of many researchers in the field and various ionization techniques have been described in recent years that allow a quick and easy-to-handle analysis of samples under ambient conditions without or with only minor sample preparation. Among those, plasma-based techniques including the low-temperature plasma probe require very little resources thereby providing great potential for implementation in mobile analytical devices. However, systematic studies on signal responsiveness with this technique, such as the influence of the analyte and matrix characteristics on relative signal intensity, are still rare. Therefore, we used a low-temperature plasma source based on dielectric barrier discharge with helium as process gas to assess influencing factors on signal intensity in mass spectrometry. Among 12 tested molecular descriptors, in particular a low vaporization enthalpy and a large molecular nonpolar surface area improve the relative signal intensity. In addition, we show that the impact of compound characteristics strongly outperforms the influence of simple sample matrices such as different organic solvents and water, with a weak trend that volatile solvents tend to decrease the signal responsiveness of the analytes. However, several specific solvent-analyte interactions occurred, which have to be considered in targeted applications of this method. Our results will help further in improving the implementation and standardization of low-temperature plasma ionization for ambient mass spectrometry and understanding the requirements and selectivity of this technique.

Influencing factors (analyte and matrix characteristics) on signal intensity in dielectric-barrier discharge plasma for ionization in mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Takats Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306:471–3.

    Article  CAS  PubMed  Google Scholar 

  2. Chen H, Venter A, Cooks RG. Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chem Commun (Cambridge, UK). 2006:2042–4.

  3. Haddad R, Sparrapan R, Kotiaho T, Eberlin MN. Easy ambient sonic-spray ionization-membrane interface mass spectrometry for direct analysis of solution constituents. Anal Chem. 2008;80:898–903.

    Article  CAS  PubMed  Google Scholar 

  4. Shiea J, Huang M-Z, Hsu H-J, Lee C-Y, Yuan C-H, Beech I, et al. Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids. Rapid Commun Mass Spectrom. 2005;19:3701–4.

    Article  CAS  PubMed  Google Scholar 

  5. Sampson JS, Hawkridge AM, Muddiman DC. Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom. 2006;17:1712–6.

    Article  CAS  PubMed  Google Scholar 

  6. Nemes P, Vertes A. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem. 2007;79:8098–106.

    Article  CAS  PubMed  Google Scholar 

  7. Cody RB, Laramée JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem. 2005;77:2297–302.

    Article  CAS  PubMed  Google Scholar 

  8. Ratcliffe LV, Rutten FJM, Barrett DA, Whitmore T, Seymour D, Greenwood C, et al. Surface analysis under ambient conditions using plasma-assisted desorption/ionization mass spectrometry. Anal Chem. 2007;79:6094–101.

    Article  CAS  PubMed  Google Scholar 

  9. Harper JD, Charipar NA, Mulligan CC, Zhang X, Cooks RG, Ouyang Z. Low-temperature plasma probe for ambient desorption ionization. Anal Chem. 2008;80:9097–104.

    Article  CAS  PubMed  Google Scholar 

  10. Venter A, Sojka PE, Cooks RG. Droplet dynamics and ionization mechanisms in desorption electrospray ionization mass spectrometry. Anal Chem. 2006;78:8549–55.

    Article  CAS  PubMed  Google Scholar 

  11. Na N, Zhao M, Zhang S, Yang C, Zhang X. Development of a dielectric barrier discharge ion source for ambient mass spectrometry. J Am Soc Mass Spectrom. 2007;18:1859–62.

    Article  CAS  PubMed  Google Scholar 

  12. Andrade FJ, Wetzel WC, Chan GC-Y, Webb MR, Gamez G, Ray SJ, et al. A new, versatile, direct-current helium atmospheric-pressure glow discharge. J Anal At Spectrom. 2006;21:1175–84.

    Article  CAS  Google Scholar 

  13. Andrade FJ, Shelley JT, Wetzel WC, Webb MR, Gamez G, Ray SJ, et al. Atmospheric pressure chemical ionization source. 2. Desorption-ionization for the direct analysis of solid compounds. Anal Chem. 2008;80:2654–63.

    Article  CAS  PubMed  Google Scholar 

  14. Harris GA, Galhena AS, Fernández FM. Ambient sampling/ionization mass spectrometry: applications and current trends. Anal Chem. 2011;83:4508–38.

    Article  CAS  PubMed  Google Scholar 

  15. Weston DJ. Ambient ionization mass spectrometry: current understanding of mechanistic theory; analytical performance and application areas. Analyst. 2010;135:661–8.

    Article  CAS  PubMed  Google Scholar 

  16. Albert A, Shelley JT, Engelhard C. Plasma-based ambient desorption/ionization mass spectrometry: state-of-the-art in qualitative and quantitative analysis. Anal Bioanal Chem. 2014;406:6111–27.

    Article  CAS  PubMed  Google Scholar 

  17. Hayen H, Michels A, Franzke J. Dielectric barrier discharge ionization for liquid chromatography/mass spectrometry. Anal Chem. 2009;81:10239–45.

    Article  CAS  PubMed  Google Scholar 

  18. Kogelschatz U. Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process. 2003;23:1–46.

    Article  CAS  Google Scholar 

  19. Kiontke A, Holzer F, Belder D, Birkemeyer C. Requirements of low-temperature plasma ionization support miniaturization of the ion source. Anal Bioanal Chem. 2018; https://doi.org/10.1007/s00216-018-1033-7 .

  20. Newsome GA, Ackerman LK, Johnson KJ. J Am Soc Mass Spectrom. 2016;27:135–43.

    Article  CAS  PubMed  Google Scholar 

  21. Song L, Gibson SC, Bhandari D, Cook KD, Bartmess JE. Ionization mechanism of positive-ion direct analysis in real time: a transient microenvironment concept. Anal Chem. 2009;81:10080–8.

    Article  CAS  PubMed  Google Scholar 

  22. Na N, Xia Y, Zhu Z, Zhang X, Cooks RG. Birch reduction of benzene in a low-temperature plasma. Angew Chem Int Ed Engl. 2009;48:2017–9.

    Article  CAS  PubMed  Google Scholar 

  23. Kiontke A, Oliveira-Birkmeier A, Opitz A, Birkemeyer C. Electrospray ionization efficiency is dependent on different molecular descriptors with respect to solvent pH and instrumental configuration. PLoS One. 2016;11:e0167502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Evans JD. Straightforward statistics for the behavioral sciences. Pacific Grove: Brooks/Cole Publishing Company; 1996.

    Google Scholar 

  25. Huang G, Xu W, Visbal-Onufrak MA, Ouyang Z, Cooks RG. Direct analysis of melamine in complex matrices using a handheld mass spectrometer. Analyst. 2010;135:705–11.

    Article  CAS  PubMed  Google Scholar 

  26. Garcia-Reyes JF, Harper JD, Salazar GA, Charipar NA, Ouyang Z, Cooks RG. Detection of explosives and related compounds by low-temperature plasma ambient ionization mass spectrometry. Anal Chem. 2011;83:1084–92.

    Article  CAS  PubMed  Google Scholar 

  27. Lee HJ, Oh J-S, Heo SW, Moon JH, J-h K, Park SG, et al. Peltier heating-assisted low temperature plasma ionization for ambient mass spectrometry. Mass Spectrom Lett. 2015;6:71–4.

    Article  CAS  Google Scholar 

  28. Wiley JS, Garcia-Reyes JF, Harper JD, Charipar NA, Ouyang Z, Cooks RG. Screening of agrochemicals in foodstuffs using low-temperature plasma (LTP) ambient ionization mass spectrometry. Analyst. 2010;135:971–9.

  29. Albert A, Engelhard C. Characteristics of low-temperature plasma ionization for ambient mass spectrometry compared to electrospray ionization and atmospheric pressure chemical ionization. Anal Chem. 2012;84:10657–64.

    Article  CAS  PubMed  Google Scholar 

  30. Keeney M, Heicklen J. Surface tension and the heat of vaporization: a simple empirical correlation. J Inorg Nucl Chem. 1979:1755–8.

  31. Viswanath DS, Kuloor NR. Latent heat of vaporization, surface tension, and temperature. J Chem Eng Data. 1966;11:69–72.

    Article  CAS  Google Scholar 

  32. Petucci C, Diffendal J, Kaufman D, Mekonnen B, Terefenko G, Musselman B. Direct analysis in real time for reaction monitoring in drug discovery. Anal Chem. 2007;79:5064–70.

    Article  CAS  PubMed  Google Scholar 

  33. Shelley JT, Hieftje GM. Ionization matrix effects in plasma-based ambient mass spectrometry sources. J Anal At Spectrom. 2010;25:345–50.

    Article  CAS  Google Scholar 

  34. Szatyłowicz H. H-bonded complexes of aniline, phenol and pyridine derivatives. J Phys Org Chem. 2008;21:897–914.

    Article  CAS  Google Scholar 

  35. Rappoport Z. The chemistry of anilines. Part 1. Chichester: Wiley; 2007.

Download references

Acknowledgements

The authors thank Dr. ing. Susan Billig, Ramona Oehme, Josef J. Heiland, Sebastian Piendl, Harald Knorke (all University of Leipzig, Germany) and Aigerim Galyamova (Penn State University, USA) for technical assistance. In addition, we thank Prof. em. Berger (University of Leipzig, Germany) for kind and constant support.

Funding

This work was financed by the Deutsche Bundesstiftung Umwelt (DBU grant No. 20015/375), the German Academic Exchange Service (DAAD “Rise” program 2016), and the University of Leipzig.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andreas Kiontke or Claudia Birkemeyer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 929 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiontke, A., Engel, C., Belder, D. et al. Analyte and matrix evaporability – key players of low-temperature plasma ionization for ambient mass spectrometry. Anal Bioanal Chem 410, 5123–5130 (2018). https://doi.org/10.1007/s00216-018-1152-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1152-1

Keywords

Navigation