Skip to main content
Log in

Rapid analysis of bile acids in different biological matrices using LC-ESI-MS/MS for the investigation of bile acid transformation by mammalian gut bacteria

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Bile acids are important signaling molecules that regulate cholesterol, glucose, and energy homoeostasis and have thus been implicated in the development of metabolic disorders. Their bioavailability is strongly modulated by the gut microbiota, which contributes to generation of complex individual-specific bile acid profiles. Hence, it is important to have accurate methods at hand for precise measurement of these important metabolites. Here, a rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous identification and quantitation of primary and secondary bile acids as well as their taurine and glycine conjugates was developed and validated. Applicability of the method was demonstrated for mammalian tissues, biofluids, and cell culture media. The analytical approach mainly consists of a simple and rapid liquid-liquid extraction procedure in presence of deuterium-labeled internal standards. Baseline separation of all isobaric bile acid species was achieved and a linear correlation over a broad concentration range was observed. The method showed acceptable accuracy and precision on intra-day (1.42–11.07 %) and inter-day (2.11–12.71 %) analyses and achieved good recovery rates for representative analytes (83.7–107.1 %). As a proof of concept, the analytical method was applied to mouse tissues and biofluids, but especially to samples from in vitro fermentations with gut bacteria of the family Coriobacteriaceae. The developed method revealed that the species Eggerthella lenta and Collinsella aerofaciens possess bile salt hydrolase activity, and for the first time that the species Enterorhabdus mucosicola is able to deconjugate and dehydrogenate primary bile acids in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hofmann AF, Hagey LR. Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci. 2008;65:2461–83.

    Article  CAS  Google Scholar 

  2. Devlin AS, Fischbach MA. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat Chem Biol. 2015;11:8.

    Article  Google Scholar 

  3. Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat Rev. 2008;7:678–93.

    CAS  Google Scholar 

  4. Watanabe M, Houten SM, Wang L, Moschetta A, Mangelsdorf DJ, Heyman RA, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 2004;113(10):1408–18.

    Article  CAS  Google Scholar 

  5. Vallim TQDA, Tarling EJ, Edwards PA. Pleiotropic roles of bile acids in metabolism. Cell Metab. 2013;17:657–69.

    Article  Google Scholar 

  6. Hofmann AF, Hagey LR, Krasowski MD. Bile salts of vertebrates: structural variation and possible evolutionary significance. J Lipid Pes. 2010;51(2):226–46.

    Article  CAS  Google Scholar 

  7. Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. EMBO J. 2006;25:1419–25.

    Article  CAS  Google Scholar 

  8. Gérard P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens. 2014;3:14–24.

    Article  Google Scholar 

  9. Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47(2):241–59.

    Article  CAS  Google Scholar 

  10. Stenman LK, Holma R, Eggert A, Korpela R. A novel mechanism for gut barrier dysfunction by dietary fat: epithelial disruption by hydrophobic bile acids. Am J Physiol Gastrointest Liver Physiol. 2013;304:G227–34.

    Article  CAS  Google Scholar 

  11. Duboc H, Rajca S, Rainteau D, Benarous D, Maubert MA, Quervain E, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut. 2013;62(4):531–9.

    Article  CAS  Google Scholar 

  12. Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12:661–72.

    Article  CAS  Google Scholar 

  13. Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID, Sidaway JE, et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. PNAS. 2011;108(1):4523–30.

    Article  CAS  Google Scholar 

  14. Griffiths WJ, Sjövall J. Bile acids: analysis in biological fluids and tissues. J Lipid Res. 2010;51(1):23–41.

    Article  Google Scholar 

  15. Clavel T, Lepage P, Charrier C (2014) The Family Coriobacteriaceae. In: Rosenberg E, Delong E, Thompson F, Lory S, Stackebrandt E (eds) The Prokaryotes 4th Edition. pp 201–238

  16. Forslund K, Hildebrand F, Nielsen T, Falony G, Chatelier EL, Sungawa S, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528:262–6.

    Article  CAS  Google Scholar 

  17. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60.

    Article  CAS  Google Scholar 

  18. Scherer M, Gnewuch C, Schmitz G, Liebisch G. Rapid quantification of bile acids and their conjugates in serum by liquid chromatography–tandem mass spectrometry. J Chrom B. 2009;877:3920–5.

    Article  CAS  Google Scholar 

  19. Bobeldijk I, Hekman M, de Vries-van der Weij J, Coulier L, Ramaker R, Kleemann R, et al. Quantitative profiling of bile acids in biofluids and tissues based on accurate mass high resolution LC-FT-MS: compound class targeting in a metabolomics workflow. J Chromatogr B. 2008;871(2):306–13.

    Article  CAS  Google Scholar 

  20. Haag M, Hofmann U, Mürdter TE, Heinkele G, Leuthold P, Blank A, et al. Quantitative bile acid profiling by liquid chromatography quadrupole time-of-flight mass spectrometry: monitoring hepatitis B therapy by a novel Na+−taurocholate cotransporting polypeptide inhibitor. Anal Bioanal Chem. 2015;407:6815–25.

    Article  CAS  Google Scholar 

  21. Tagliacozzi D, Mozzi AF, Casetta B, Bertucci P, Bernardini S, Ilio CD, et al. Quantitative analysis of bile acids in human plasma by liquid chromatography-electrospray tandem mass spectrometry: a simple and rapid one-step method. Clin Chem Lab Med. 2003;41(12):1633–41.

    Article  CAS  Google Scholar 

  22. Sakakura H, Kimura N, Takeda H, Komatsu H, Ishizaki K, Nagata S. Simultaneous determination of bile acids in rat liver tissue by high-performance liquid chromatography. J Chrom B. 1998;718:33–40.

    Article  CAS  Google Scholar 

  23. Sjövall J, Setchell KD. Techniques for extraction and group separation of bile acids. In: Setchell KD, Kritchevsky P, Nair PP, editors. The bile acids: chemistry, physiology, and metabolism. NY: Plenum Press; 1988. p. 1–42.

    Chapter  Google Scholar 

  24. Roda A, Piazza F, Baraldini M. Separation techniques for bile salts analysis. J Chrom B. 1998;717:263–78.

    Article  CAS  Google Scholar 

  25. Scalia S. Bile acid separation. J Chromatogr B. 1995;671:299–317.

    Article  CAS  Google Scholar 

  26. Gatti R, Roda A, Cerre C, Bonazzi D, Cavrini V. HPLC-fluorescence determination of individual free and conjugated bile acids in human serum. Biomed Chromatogr. 1997;11:11–5.

    Article  CAS  Google Scholar 

  27. Keller S, Jahreis G. Determination of underivatised sterols and bile acid trimethyl silyl ether methyl esters by gas chromatography–mass spectrometry–single ion monitoring in faeces. J Chromatogr B. 2004;813:199–207.

    Article  CAS  Google Scholar 

  28. Batta AK, Arora R, Salen G, Tint GS, Eskreis D, Katz S. Characterization of serum and urinary bile acids in patients with primary biliary cirrhosis by gas-liquid chromatography-mass spectrometry: effect of ursodeoxycholic acid treatment. J Lipid Res. 1989;30:1953–62.

    CAS  Google Scholar 

  29. Alnouti Y, Csanaky IL, Klaassen CD. Quantitative-profiling of bile acids and their conjugates in mouse liver, bile, plasma, and urine using LC-MS/MS. J Chromatogr B. 2008;873(2):209–20.

    Article  CAS  Google Scholar 

  30. Ye L, Liu S, Wang M, Shao Y, Ding M. High-performance liquid chromatography–tandem mass spectrometry for the analysis of bile acid profiles in serum of women with intrahepatic cholestasis of pregnancy. J Chrom B. 2007;860:10–7.

    Article  CAS  Google Scholar 

  31. John C, Werner P, Worthmann A, Wegner K, Tödter K, Scheja L, et al. A liquid chromatography-tandem mass spectrometry-based method for the simultaneous determination of hydroxy sterols and bile acids. J Chrom A. 2014;1371:184–95.

    Article  CAS  Google Scholar 

  32. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:457–509.

    Google Scholar 

  33. Burkard I, von Eckardstein A, Rentsch KM. Differentiated quantification of human bile acids in serum by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2005;826:147–59.

    Article  CAS  Google Scholar 

  34. Perwaiz S, Tuchweber B, Mignault D, Gilat T, Yousef IM. Determination of bile acids in biological fluids by liquid chromatography-electrospray tandem mass spectrometry. J Lipid Res. 2001;42:114–9.

    CAS  Google Scholar 

  35. McDonald JG, Thompson BM, McCrum EC, Russell DW. Extraction and analysis of sterols in biological matrices by high performance liquid chromatography electrospray ionization mass spectrometry. Methods Enzymol. 2007;432:145–69.

    Article  CAS  Google Scholar 

  36. Cai X, Liu Y, Zhou X, Navaneethan U, Shen B, Guo B. An LC-ESI-MS method for the quantitative analysis of bile acids composition in fecal materials. Biomed Chromatogr. 2012;26(1):101–8.

    Article  Google Scholar 

  37. U.S. Department of Health and Human Services FaDAF, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM) (2001). Guidance for industry—bioanalytical method validation.

  38. DIN 32645:2008:11, Chemische Analytik; Nachweis-, Erfassungs- und Bestimmungsgrenze; Ermittlung unter Wiederholbedingungen; Begriffe, Verfahren, Auswertung. 2008.

  39. Peters FT, Drummer OH, Musshoff F. Validation of new methods. Forensic Sci Int. 2007;165:216–24.

    Article  CAS  Google Scholar 

  40. Huang J, Bathena SP, Csanaky IL, Alnouti Y. Simultaneous characterization of bile acids and their sulfate metabolites in mouse liver, plasma, bile, and urine using LC-MS/MS. J Pharm Biomed Anal. 2011;55(5):1111–9.

    Article  CAS  Google Scholar 

  41. Jäntti SE, Kivilompolo M, Öhrnberg L, Pietiläinen KH, Nygren H, Orešič M, et al. Quantitative profiling of bile acids in blood, adipose tissue, intestine, and gall bladder samples using ultra high performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2014;406:7799–816.

    Article  Google Scholar 

  42. Ando M, Kaneko T, Watanabe R, Kikuchi S, Goto T, Iida T, et al. High sensitive analysis of rat serum bile acids by liquid chromatography/electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal. 2006;40(5):1179–86.

    Article  CAS  Google Scholar 

  43. Sarafian MH, Lewis MR, Pechlivanis A, Ralphs S, McPhail MJW, Patel VC, et al. Bile acid profiling and quantification in biofluids using ultra-performance liquid chromatography tandem mass spectrometry. Anal Chem. 2015;87:9662–70.

    Article  CAS  Google Scholar 

  44. Hagio M, Matsumoto M, Fukushima M, Hara H, Ishizuka S. Improved analysis of bile acids in tissues and intestinal contents of rats using LC/ESI-MS. J Lipid Res. 2009;50(1):173–80.

    Article  CAS  Google Scholar 

  45. Luo L, Schomaker S, Houle C, Aubrecht J, Colangelo JL. Evaluation of serum bile acid profiles as biomarkers of liver injury in rodents. Toxicological Sciences. 2013.

  46. Janzen N, Peter M, Sander S, Steuerwald U, Terhardt M, Holtkamp U, et al. Newborn screening for congenital adrenal hyperplasia: additional steroid profile using liquid chromatography-tandem mass spectrometry. J Clin Endocrinol Metab. 2007;92(7):2581–9.

    Article  CAS  Google Scholar 

  47. Bootsma AH, Overmars H, Van Rooij A, Van Lint AEM, Wanders RJA, Van Gennip AH, et al. Rapid analysis of conjugated bile acids in plasma using electrospray tandem mass spectrometry: application for selective screening of peroxisomal disorders. J Inherit Metab Dis. 1999;22:307–10.

    Article  CAS  Google Scholar 

  48. Clavel T, Desmarchelier C, Haller D, Gérard P, Rohn S, Lepage P, Daniel H. Intestinal microbiota in metabolic diseases: from bacterial community structure and functions to species of pathophysiological relevance. Gut Microbes 2014;5:4:9.

  49. Kumar RS, Brannigan JA, Prabhune AA, Pundle AV, Dodson GG, Dodson EJ, et al. Structural and functional analysis of a conjugated bile salt hydrolase from Bifidobacterium longum reveals an evolutionary relationship with penicillin V acylase. J Biol Chem. 2006;281(43):32516–25.

    Article  CAS  Google Scholar 

  50. Boever PD, Verstraete W. Bile salt deconjugation by Lactobacillus plantarum 80 and its implication for bacterial toxicity. J Appl Microbiol. 1999;87:345–52.

    Article  Google Scholar 

  51. Batta AK, Salen G, Arora R, Shefer S, Batta M, Person A. Side chain conjugation prevents bacterial 7-dehydroxylation of bile acids. J Biol Chem. 1990;265(19):1025–8.

    Google Scholar 

  52. Clavel T, Charrier C, Braune A, Wenning M, Blaut M, Haller D. Isolation of bacteria from the ileal mucosa of TNFdeltaARE mice and description of Enterorhabdus mucosicola gen. nov., sp. nov. Int J Syst Evol Microbiol. 2009;59(Pt 7):1805–12.

    Article  CAS  Google Scholar 

  53. Odermatt A, Chunha TD, Penno CA, Chanasawangbhuwana C, Reichert C, Wolf A, et al. Hepatic reduction of the secondary bile acid 7-oxolithocholic acid is mediated by 11β-hydroxysteroid dehydrogenase 1. Biochem J. 2011;436:621–9.

    Article  CAS  Google Scholar 

  54. Hamilton JP, Xie G, Raufman J-P, Hogan S, Griffin TL, Packard CA, et al. Human cecal bile acids: concentration and spectrum. Am J Physiol Gastrointest Liver Physiol. 2007;293:G256–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Caroline Ziegler for help with bacterial cultivation. As part of the joint DFG/ANR initiative, the authors received financial support from the German Research Foundation (grant no. CL481/1-1 and RO3477/9-1) and the French National Research Agency (grant no. ANR-13-ISV3-0008-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Rohn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 473 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wegner, K., Just, S., Gau, L. et al. Rapid analysis of bile acids in different biological matrices using LC-ESI-MS/MS for the investigation of bile acid transformation by mammalian gut bacteria. Anal Bioanal Chem 409, 1231–1245 (2017). https://doi.org/10.1007/s00216-016-0048-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0048-1

Keywords

Navigation