Skip to main content

Advertisement

Log in

Strategies for improving the efficacy of bioengineered bone constructs: a perspective

  • Bone Quality Seminars: Bone Fracture Healing and Strengthening
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Bioengineered bone scaffolds are intended for use in large bone defects. Successful bone constructs should stimulate and support both the onset and the continuance of bone ingrowth. In an attempt to improve their performance and to compete with the one of autologous bone grafts, a growing symbiosis at the biological and material level is required. Recent advances have been made to further exploit the osteogenic potential of MSCs in scaffold development. Current research encompasses new strategies for reducing cell death after implantation and the manufacturing of tailored, instructive scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giannoudis PV, Pountos I (2005) Tissue regeneration. The past, the present and the future. Injury 36(Suppl 4):S2–S5

    Article  PubMed  Google Scholar 

  2. Desai BM (2007) Osteobiologics. Am J Orthop 36(4 Suppl):8–11

    PubMed  Google Scholar 

  3. Heary RF, Schlenk RP, Sacchieri TA, Barone D, Brotea C (2002) Persistent iliac crest donor site pain: independent outcome assessment. Neurosurgery 50(3):510–516, discussion 516–7

    PubMed  Google Scholar 

  4. Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16(3):381–390

    PubMed  CAS  Google Scholar 

  5. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9(5):641–650

    Article  PubMed  CAS  Google Scholar 

  6. Bianco P, Robey PG (2001) Stem cells in tissue engineering. Nature 414(6859):118–121

    Article  PubMed  CAS  Google Scholar 

  7. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276(5309):71–74

    Article  PubMed  CAS  Google Scholar 

  8. Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28(8):875–884

    Article  PubMed  CAS  Google Scholar 

  9. Simmons PJ, Torok-Storb B (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78(1):55–62

    PubMed  CAS  Google Scholar 

  10. Dennis JE, Carbillet JP, Caplan AI, Charbord P (2002) The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs 170(2–3):73–82

    Article  PubMed  Google Scholar 

  11. Deschaseaux F, Gindraux F, Saadi R, Obert L, Chalmers D, Herve P (2003) Direct selection of human bone marrow mesenchymal stem cells using an anti-CD49a antibody reveals their CD45med, low phenotype. Br J Haematol 122(3):506–517

    Article  PubMed  Google Scholar 

  12. Delorme B, Ringe J, Gallay N, Le Vern Y, Kerboeuf D, Jorgensen C et al (2008) Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood 111(5):2631–2635

    Article  PubMed  CAS  Google Scholar 

  13. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131(2):324–336

    Article  PubMed  CAS  Google Scholar 

  14. Cancedda R, Bianchi G, Derubeis A, Quarto R (2003) Cell therapy for bone disease: a review of current status. Stem Cells 21(5):610–619

    Article  PubMed  CAS  Google Scholar 

  15. Logeart-Avramoglou D, Anagnostou F, Bizios R, Petite H (2005) Engineering bone: challenges and obstacles. J Cell Mol Med 9(1):72–84

    Article  PubMed  CAS  Google Scholar 

  16. Bruder SP, Jaiswal N, Ricalton NS, Mosca JD, Kraus KH, Kadiyala S (1998) Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res 355 Suppl:S247–S256

    Article  PubMed  Google Scholar 

  17. Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6(2):125–134

    Article  PubMed  CAS  Google Scholar 

  18. Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I et al (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49(3):328–337

    Article  PubMed  CAS  Google Scholar 

  19. Bensaïd W, Oudina K, Viateau V, Potier E, Bousson V, Blanchat C et al (2005) De novo reconstruction of functional bone by tissue engineering in the metatarsal sheep model. Tissue Eng 11(5–6):814–824

    Article  PubMed  Google Scholar 

  20. Petite H, Viateau V, Bensaïd W, Meunier A, de Pollack C, Bourguignon M et al (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18(9):959–963

    Article  PubMed  CAS  Google Scholar 

  21. Marie PJ, Fromigué O (2006) Osteogenic differentiation of human marrow-derived mesenchymal stem cells. Regen Med 1(4):539–548

    Article  PubMed  CAS  Google Scholar 

  22. Logeart-Avramoglou D, Oudina K, Bourguignon M, Delpierre L, Nicola MA, Bensidhoum M et al (2009) In vitro and in vivo bioluminescent quantification of viable stem cells in engineered constructs. Tissue Eng Part C Methods 16(3):447–458

    Article  Google Scholar 

  23. Dégano IR, Vilalta M, Bagó JR, Matthies AM, Hubbell JA, Dimitriou H et al (2008) Bioluminescence imaging of calvarial bone repair using bone marrow and adipose tissue-derived mesenchymal stem cells. Biomaterials 29(4):427–437

    Article  PubMed  Google Scholar 

  24. Haider HKH, Ashraf M (2008) Strategies to promote donor cell survival: combining preconditioning approach with stem cell transplantation. J Mol Cell Cardiol 45(4):554–566

    Article  PubMed  CAS  Google Scholar 

  25. Tögel F, Yang Y, Zhang P, Hu Z, Westenfelder C (2008) Bioluminescence imaging to monitor the in vivo distribution of administered mesenchymal stem cells in acute kidney injury. Am J Physiol Renal Physiol 295(1):F315–F321

    Article  PubMed  Google Scholar 

  26. Colton CK (1995) Implantable biohybrid artificial organs. Cell Transplant 4(4):415–436

    Article  PubMed  CAS  Google Scholar 

  27. Folkman J, Hochberg M (1973) Self-regulation of growth in three dimensions. J Exp Med 138(4):745–753

    Article  PubMed  CAS  Google Scholar 

  28. Sutherland RM, Sordat B, Bamat J, Gabbert H, Bourrat B, Mueller-Klieser W (1986) Oxygenation and differentiation in multicellular spheroids of human colon carcinoma. Cancer Res 46(10):5320–5329

    PubMed  CAS  Google Scholar 

  29. Deschepper M, Oudina K, David B, Myrtil V, Collet C, Bensidhoum M, et al. (2011) Survival and function of mesenchymal stem cells (MSCs) depend on glucose to overcome exposure to long-term, severe and continuous hypoxia. J Cell Mol Med. doi:10.1111/j.1582-4934.2010.01138.x

  30. Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 5:29–39, discussion 39–40

    PubMed  CAS  Google Scholar 

  31. Logeart-Avramoglou D (2005) Delivery of osteogenic regulatory growth factors. In: Petite H, Quarto R (eds) Tissue engineering of bone. Landes, Bioscience, pp 107–125

    Google Scholar 

  32. Hamidouche Z, Fromigué O, Ringe J, Häupl T, Vaudin P, Pagès JC et al (2009) Priming integrin alpha5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis. Proc Natl Acad Sci USA 106(44):18587–18591

    Article  PubMed  CAS  Google Scholar 

  33. Won Kim H, Haider HK (2009) Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8-associated protein 2. J Biol Chem 284(48):33161–33168

    Google Scholar 

  34. Theus MH, Wei L (2008) In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Exp Neurol 210(2):656–670

    Google Scholar 

  35. Liu X, Hou J (2009) Lysophosphatidic acid protects mesenchymal stem cells against ischemia-induced apoptosis in vivo. Stem Cells Dev 18(7):947–954

    Google Scholar 

  36. Xu R, Chen J (2008) Lovastatin protects mesenchymal stem cells against hypoxia- and serum deprivation-induced apoptosis by activation of PI3K/Akt and ERK1/2. J Cell Biochem 103(1):256–269

    Google Scholar 

  37. Pasha Z, Wang Y (2008) Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res 77(1):134–142

    Google Scholar 

  38. Giannoni P, Scaglione S (2010) Short-time survival and engraftment of bone marrow stromal cells in an ectopic model of bone regeneration. Tissue Eng Part A 16(2):489–499

    Google Scholar 

  39. Zeng B, Ren X (2008) Paracrine action of HO-1-modified mesenchymal stem cells mediates cardiac protection and functional improvement. Cell Biol Int 32(10):1256–1264

    Google Scholar 

  40. Song H, Kwon K (2005) Transfection of mesenchymal stem cells with the FGF-2 gene improves their survival under hypoxic conditions. Mol Cells 19(3):402–407

    Google Scholar 

  41. Deng J, Han Y (2010) Overexpressing cellular repressor of E1A-stimulated genes protects mesenchymal stem cells against hypoxia- and serum deprivation-induced apoptosis by activation of PI3K/Akt. Apoptosis 15(4):463–473

    Google Scholar 

  42. Wang F, Li Z (2009) Fabrication and characterization of prosurvival growth factor releasing, anisotropic scaffolds for enhanced mesenchymal stem cell survival/growth and orientation. Biomacromolecules 10(9):2609–2618

    Google Scholar 

Download references

Acknowledgment

The publication of the proceedings of the 5th Bone Quality Seminar 2010 has been made possible through an educational grant from Servier.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Petite.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petite, H., Vandamme, K., Monfoulet, L. et al. Strategies for improving the efficacy of bioengineered bone constructs: a perspective. Osteoporos Int 22, 2017–2021 (2011). https://doi.org/10.1007/s00198-011-1614-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1614-1

Keywords

Navigation