Skip to main content
Log in

Finite Element Analysis and Simulation Evaluation of a Magnetorheological Valve

  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

This paper presents an optimised design of a high-efficiency magnetorheological (MR) valve using finite element analysis. The MR valve is composed of a core, a wound coil, and a cylinder-shaped flux return. The core and flux return form the annulus through which the MR fluid flows. The effects of magnetic field formation mechanism and MR effect formation mechanism on the MR valve performance are investigated. Analytical results of the magnetic flux density in the valve indicate that the saturation in the magnetic flux may be in the core, the flux return, or the valve length. To prevent the saturation as well as to minimise the valve weight, the dimensions of the valve are optimally determined using finite element analysis. In addition, this analysis is coupled with the typical Bingham plastic analysis to predict the MR valve performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

ID="A1"Correspondance and offprint requests to: Dr W. Li, Centre for Mechanics of Micro-Systems, School of Mechanical & Production Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798. E-mail: mwhli@ntu.edu.sg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, N., Du, H. & Li, W. Finite Element Analysis and Simulation Evaluation of a Magnetorheological Valve. Int J Adv Manuf Technol 21, 438–445 (2003). https://doi.org/10.1007/s001700300051

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001700300051

Navigation