Skip to main content
Log in

Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A new algorithm for the solution of multimaterial topology optimization problems is introduced in the present study. The presented method is based on the splitting of a multiphase topology optimization problem into a series of binary phase topology optimization sub-problems which are solved partially, in a sequential manner, using a traditional binary phase topology optimization solver; internal solver. The coupling between these incomplete solutions is ensured using an outer iteration strategy based on the block coordinate descend method. The presented algorithm provides a general framework to extend the traditional binary phase topology optimization solvers for the solution of multiphase topology optimization problems. Interesting features of the presented algorithm are:generality, simplicity and the ease of implementation. The presented algorithm is used to solve multimaterial minimum structural and thermal compliance topology optimization problems based on the classical optimality criteria method. Details of MATLAB implementation are presented and the complete program listings are provided as the Supplementary Materials. The success and performance of the presented method are studied through several two dimensional numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Allaire G (2002) Shape optimization by the homogenization method. Springer, New York

    Book  MATH  Google Scholar 

  • Allaire G, Castro C (2002) Optimization of nuclear fuel reloading by the homogenization method. Struct Multidisc Optim 24(1):11–22

    Article  Google Scholar 

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MATH  MathSciNet  Google Scholar 

  • Andreassen E, Clausen A, Schevenels M, Lazarov B, Sigmund O (2011) Efficient topology optimization in matlab using 88 lines of code. Struct Multidisc Optim 43(1):1–16

    Article  MATH  Google Scholar 

  • Bendsøe M (1995) Optimization of structural topology, shape, and material. Springer, New York

    Book  Google Scholar 

  • Bendsøe M, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  Google Scholar 

  • Bendsøe M, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654

    Google Scholar 

  • Bendsøe M, Sigmund O (2004) Topology optimization: theory, methods and applications. Springer, New York

    Book  Google Scholar 

  • Bezdek J, Hathaway R, Howard R, Wilson C, Windham M (1987) Local convergence analysis of a grouped variable version of coordinate descent. J Optim Theory Appl 54(3):471–477

    Article  MATH  MathSciNet  Google Scholar 

  • Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization. ESAIM COCV 9:19–48

    Article  MATH  MathSciNet  Google Scholar 

  • Dombre E, Allaire G, Pantz O, Schmitt D (2012) Shape optimization of a sodium fast reactor core. In: ESAIM proceedings, EDP Sciences, vol 38, pp 319–334

  • Donoso A, Pedregal P (2005) Optimal design of 2d conducting graded materials by minimizing quadratic functionals in the field. Struct Multidisc Optim 30(5):360–367

    Article  MATH  MathSciNet  Google Scholar 

  • Gibiansky L, Sigmund O (2000) Multiphase composites with extremal bulk modulus. J Mech Phys Solids 48(3):461–498

    Article  MATH  MathSciNet  Google Scholar 

  • Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11(2):127–140

    Article  MATH  MathSciNet  Google Scholar 

  • Huang X, Xie Y (2009) Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput Mech 43(3):393–401

    Article  MATH  MathSciNet  Google Scholar 

  • Huang X, Xie M, et al (2010) Evolutionary topology optimization of continuum structures: methods and applications. Wiley, New York

    Book  Google Scholar 

  • Lin C, Lucidi S, Palagi L, Risi A, Sciandrone M (2009) Decomposition algorithm model for singly linearly-constrained problems subject to lower and upper bounds. J Optim Theory Appl 141(1):107–126

    Article  MATH  MathSciNet  Google Scholar 

  • Liuzzi G, Palagi L, Piacentini M (2011) On the convergence of a jacobi-type algorithm for singly linearly-constrained problems subject to simple bounds. Optim Lett 5(2):347–362

    Article  MATH  MathSciNet  Google Scholar 

  • Luenberger D, Ye Y (2008) Linear and nonlinear programming, 3rd edn. Springer, New York

    MATH  Google Scholar 

  • Luo Z, Tong L, Luo J, Wei P, Wang M (2009) Design of piezoelectric actuators using a multiphase level set method of piecewise constants. J Comput Phys 228(7):2643–2659

    Article  MATH  MathSciNet  Google Scholar 

  • Nocedal J, Wright S (2006) Numerical optimization, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Sigmund O (2001a) A 99 line topology optimization code written in matlab. Struct Multidisc Optim 21(2):120–127

    Article  Google Scholar 

  • Sigmund O (2001b) Recent developments in extremal material design. In: Wall WA, Bletzinger K-U, Schweizerhof K (eds) Trends in computational mechanics. CIMNE, Barcelona, pp 228–232

    Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Multidisc Optim 16(1):68–75

    Article  Google Scholar 

  • Sigmund O, Torquato S (1996) Composites with extremal thermal expansion coefficients. Appl Phys Lett 69(21):3203–3205

    Article  Google Scholar 

  • Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067

    Article  MathSciNet  Google Scholar 

  • Sigmund O, Torquato S (1999) Design of smart composite materials using topology optimization. Smart Mater Struct 8:365

    Article  Google Scholar 

  • Tavakoli R, Zhang H (2012) A nonmonotone spectral projected gradient method for large-scale topology optimization problems. Numer Algebra Control Optim 2(2):395–412

    Article  MATH  MathSciNet  Google Scholar 

  • Tseng P (2001) Convergence of a block coordinate descent method for nondifferentiable minimization. J Optim Theory Appl 109(3):475–494

    Article  MATH  MathSciNet  Google Scholar 

  • Tseng P, Yun S (2010) A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training. Comput Optim Appl 47(2):179–206

    Article  MATH  MathSciNet  Google Scholar 

  • Vese L, Chan T (2002) A multiphase level set framework for image segmentation using the mumford and shah model. Int J Comput Vis 50(3):271–293

    Article  MATH  Google Scholar 

  • Wang M, Wang X (2004) color level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193(6):469–496

    Article  MATH  Google Scholar 

  • Wang M, Wang X (2005) A level-set based variational method for design and optimization of heterogeneous objects. Comput Aided Des 37(3):321–337

    Article  Google Scholar 

  • Wang M, Zhou S (2004) Synthesis of shape and topology of multi-material structures with a phase-field method. J Comput-Aided Mater Des 11(2):117–138

    Article  Google Scholar 

  • Wei P, Wang M (2009) Piecewise constant level set method for structural topology optimization. Int J Numer Methods Eng 78(4):379–402

    Article  MATH  Google Scholar 

  • Yulin M, Xiaoming W (2004) A level set method for structural topology optimization and its applications. Adv Eng Softw 35(7):415–441

    Article  MATH  Google Scholar 

  • Zangwill W (1969) Nonlinear programming: a unified approach. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Zhao H, Chan T, Merriman B, Osher S (1996) A variational level set approach to multiphase motion. J Comput Phys 127(1):179–195

    Article  MATH  MathSciNet  Google Scholar 

  • Zhou S, Wang M (2006) 3d multi-material structural topology optimization with the generalized cahn-hilliard equations. CMES: Comput Model Eng Sci 16(2):83–102

    Google Scholar 

  • Zhou S, Wang M (2007) Multimaterial structural topology optimization with a generalized cahn–hilliard model of multiphase transition. Struct Multidisc Optim 33(2):89–111

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank anonymous reviewers for their constructive comments which improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouhollah Tavakoli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 152 KB)

(ZIP 4.20 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavakoli, R., Mohseni, S.M. Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation. Struct Multidisc Optim 49, 621–642 (2014). https://doi.org/10.1007/s00158-013-0999-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-013-0999-1

Keywords

Navigation