Skip to main content
Log in

Effect of l-NAME, an inhibitor of nitric oxide synthesis, on plasma levels of IL-6, IL-8, TNFα and nitrite/nitrate in human septic shock

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objectives: We tested the effects of NG-nitro-L-arginine methyl ester (l-NAME), an inhibitor of nitric oxide (NO) synthesis, on plasma levels of interleukin (IL) IL-6, IL-8, tumor necrosis factor-alpha (TNFα) and nitrite/nitrate (NO 2 /NO 3 ) in patients with severe septic shock.

Design: Prospective clinical study.

Setting: Surgical intensive care unit at a university hospital.

Patients: 11 consecutive patients with severe septic shock.

Interventions: Standard hemodynamic measurements were made and blood samples taken at intervals before, during, and after a 12-h infusion of l-NAME 1 mg · kg−1 ·h−1 for determination of plasma IL-6, IL-8, TNFα and NO 2 /NO 3 concentration.

Measurements and results: Patients with sepsis had increased plasma levels of IL-6, IL-8, TNFα, and NO 2 /NO 3 (p<0.05). Plasma levels of IL-6, IL-8, and NO 2 /NO 3 were negatively correlated with systemic vascular resistance (r=−0.62, r=−0.65, and r=−0.78, respectively, all p<0.05). Continuous infusion of l-NAME increased mean arterial pressure and systemic vascular resistance, with a concomitant reduction in cardiac output (all p<0.01). No significant changes were seen in levels of plasma IL-6, IL-8, and NO 2 /NO 3 during the 24-h observation period. Plasma levels of TNFα were significantly reduced during l-NAME infusion compared to baseline (p<0.05).

Conclusions: NO plays a role in the cardiovascular derangements of human septic shock. Inhibition of NO synthesis with l-NAME does not promote excessive cytokine release in patients with severe sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parrillo JE (1993) Pathogenetic mechanisms of septic shock. N Engl J Med 328: 953–963

    Google Scholar 

  2. Parker MM, McCarthy KE, Ognibene FP et al (1990) Right ventricular dysfunction and dilatation, similar to left ventricular changes, characterize the cardiac depression of septic shock in humans. Chest 97:126–130

    Article  CAS  PubMed  Google Scholar 

  3. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    CAS  PubMed  Google Scholar 

  4. Avontuur JA, Bruining HA, Ince C (1997) Nitric oxide causes dysfunction of coronary autoregulation in endotoxemic rats. Cardiovasc Res 35: 368–376

    Article  CAS  PubMed  Google Scholar 

  5. Ochoa JB, Udekwu AO, Billiar TR et al (1991) Nitrogen oxide levels in patients after trauma and during sepsis. Ann Surg 214:621–626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Gomez-jimenez J, Salgado A, Mourelle M et al (1995) l-arginine: nitric oxide pathway in endotoxemia and human septic shock. Crit Care Med 23:253–258

    Article  CAS  PubMed  Google Scholar 

  7. Kilbourn RG, Jubran A, Gross SS et al (1990) NG-methyl-l-arginine inhibits tumor necrosis factor-induced hypotension: implications for the involvement of nitric oxide. Proc Natl Acad Sei USA 87: 3629–3632

    Article  CAS  Google Scholar 

  8. Meyer J, Traber LD, Nelson S et al (1992) Reversal of hyperdynamic responses to continuous endotoxin administration by inhibition of NO synthesis. J Appl Physiol 73: 324–328

    CAS  PubMed  Google Scholar 

  9. Landin L, Lorente JA, Renés E et al (1994) Inhibition of nitric oxide synthesis improves the vasoconstrictive effect of noradrenaline in sepsis. Chest 106:250–256

    Article  CAS  PubMed  Google Scholar 

  10. Lorente JA, Landin L, De Pablo R et al (1993) l-arginine pathway in the sepsis syndrome. Crit Care Med 21:1287–1295

    Article  CAS  PubMed  Google Scholar 

  11. Petros A, Lamb G, Leone A et al (1994) Effects of a nitric oxide synthase inhibitor in humans with septic shock. Cardiovasc Res 28: 34–39

    Article  CAS  PubMed  Google Scholar 

  12. Kiehl MG, Ostermann H, Meyer J, Kie-nast J (1997) Nitric oxide synthase inhibition by l-NAME in leucocytopenic patients with severe septic shock. Intensive Care Med 23: 561–566

    Article  CAS  PubMed  Google Scholar 

  13. Fukatsu K, Saito H, Fukushima R et al (1995) Detrimental effects of a nitric oxide synthase inhibitor (N-ω-nitro-l-arginine-methyl-ester) in a murine sepsis model. Arch Surg 130: 410–414

    Article  CAS  PubMed  Google Scholar 

  14. Tiao G, Rafferty J, Ogle C et al (1994) Detrimental effect of nitric oxide synthase inhibition during endotoxemia may be caused by high levels of tumor necrosis factor and interleukin-6. Surgery 116: 332–338

    CAS  PubMed  Google Scholar 

  15. Friedland JS, Porter JC, Daryanani S et al (1996) Plasma proinflammatory cytokine concentrations, acute physiology and chronic health evaluation (APACHE) III scores and survival in patients in an intensive care unit. Crit Care Med 24:1775–1781

    Article  CAS  PubMed  Google Scholar 

  16. Carlstedt F, Lind L, Lindahl B (1997) Proinflammatory cytokines, measured in a mixed population on arrival in the emergency department, are related to mortality and severity of disease. J Intern Med 242: 361–365

    Article  CAS  PubMed  Google Scholar 

  17. Thijs LG, Hack CE (1995) Time course of cytokine levels in sepsis. Intensive Care Med 21 (Suppl 2): S258-S263

    Article  PubMed  Google Scholar 

  18. Martin C, Boisson C, Haccoun M et al (1997) Patterns of cytokine evolution (tumor necrosis factor-α and interleukin-6) after septic shock, hemorrhagic shock, and severe trauma. Crit Care Med 25:1813–1819

    Article  CAS  PubMed  Google Scholar 

  19. Cook HT, Cattell V (1996) Role of nitric oxide in immune-mediated disease. Clin Sei 91: 375–384

    CAS  Google Scholar 

  20. Meyer TA, Tiao GM, James JH et al (1995) Nitric oxide inhibits LPS-induced IL-6 production in enterocytes. J Surg Res 58: 570–575

    Article  CAS  PubMed  Google Scholar 

  21. Villarete LH, Remick DG (1997) Nitric oxide regulation of interleukin-8 gene expression. Shock 7: 29–35

    Article  CAS  PubMed  Google Scholar 

  22. Bone RC, Fischer CJ, Clemmer TP et al (1989) The sepsis syndrome: a valid clinical entity. Crit Care Med 17: 389–393

    Article  CAS  PubMed  Google Scholar 

  23. Stam TC, Jongen-Lavrencic M, Egger-mont AM, Swaak AJ (1996) Effects of isolated limb perfusion with tumour necrosis factor-alpha on the function of monocytes and T lymphocytes in patients with cancer. Eur J Clin Invest 26: 1085–1091

    Article  CAS  PubMed  Google Scholar 

  24. Phizackerley PJ, Al-Dabbagh SA (1983) The estimation of nitrate and nitrite in saliva and urine. Anal Biochem 131:242–245

    Article  CAS  PubMed  Google Scholar 

  25. Knaus WA, Le Gall JR, Wagner DP et al (1985) APACHE II: a severity of disease classification system. Crit Care Med 13: 818–829

    Article  CAS  PubMed  Google Scholar 

  26. Lambert LE, Whitten JP, Baron BM et al (1991) Nitric oxide synthesis in the CNS, endothelium and macrophages differs in its sensivity to inhibition by arginine analogues. Life Sei 48: 69–75

    Article  CAS  Google Scholar 

  27. Leaf CD, Wishnok JS, Hurley JP et al (1990) Nitrate biosynthesis in rats, ferrets and humans. Precursor studies with L-arginine. Carcinogenesis 11: 855–858

    Article  CAS  PubMed  Google Scholar 

  28. Leone AM, Gustafsson LE, Francis PL et al (1994) Nitric oxide in exhaled breath in humans: direct GC-MS confirmation. Biochem Biophys Res Commun 20:883–887

    Article  Google Scholar 

  29. Vallance P, Patton S, Bhagat K et al (1995) Direct measurement of nitric oxide in human beings. Lancet 345: 153–154

    Article  Google Scholar 

  30. Beutler B, Cerami A (1987) Cachectin: more than a tumor necrosis factor. N Engl J Med 316: 379–385

    Article  CAS  PubMed  Google Scholar 

  31. Havell EA (1989) Evidence that tumor necrosis factor has an important role in antibacterial resistance. J Immunol 143:2894–2901

    CAS  PubMed  Google Scholar 

  32. Florquin S, Amraoui Z, Dubois C et al (1994) The protective role of endogenously synthesized nitric oxide in staphylococcal enterotoxin B-induced shock in mice. J Exp Med 180:1153–1158

    Article  CAS  PubMed  Google Scholar 

  33. Boczkowski J, Philip I, Tedgui A et al (1995) Effects of inhibition of nitric oxide synthesis on TNFα serum levels in E coli endotoxemic rats. Life Sei 57: 147–152

    Article  Google Scholar 

  34. Renz H, Gong JH, Schmidt A et al (1988) Release of tumor necrosis factor-alpha from macrophages. Enhancement and suppression are dose-dependently regulated by prostaglandin E2 and cyclic nucleotides. J Immunol 141: 2388–2393

    CAS  PubMed  Google Scholar 

  35. Van Snick J (1990) Interleukin-6. An overview. Am Rev Immunol 8: 253–278

    Article  Google Scholar 

  36. Baggiolini M, Clark-Lews I (1992) Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett 307: 97–101

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avontuur, J.A.M., Stam, T.C., Eggermont, A.M.M. et al. Effect of l-NAME, an inhibitor of nitric oxide synthesis, on plasma levels of IL-6, IL-8, TNFα and nitrite/nitrate in human septic shock. Intensive Care Med 24, 673–679 (1998). https://doi.org/10.1007/s001340050643

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001340050643

Key words

Navigation