Skip to main content
Log in

A ‘Chinese Spring’ wheat (Triticum aestivum L.) bacterial artificial chromosome library and its use in the isolation of SSR markers for targeted genome regions

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A bacterial artificial chromosome (BAC) library was constructed from the bread wheat (Triticum aestivum L.) genotype ‘Chinese Spring’ (‘CS’). The library consists of 395,136 clones with an estimated average insert size of 157 kb. This library provides an estimated 3.4-fold genome coverage for this hexaploid species. The genome coverage was confirmed by RFLP analysis of single-copy RFLP clones. The CS BAC library was used to develop simple sequence repeat (SSR) markers for targeted genome regions using five sequence-tagged-site (STS) markers designed from the chromosome arm of 3BS. The SSR markers for the targeted genome region were successfully obtained. However, similar numbers of new SSR markers were also generated for the other two homoeologous group 3 chromosomes. This data suggests that BAC clones belonging to all three chromosomes of homoeologous group 3 were isolated using the five STS primers. The potential impacts of these results on marker isolation in wheat and on library screening in general are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allouis S, Moore G, Bellec A, Sharp R, Faivre Rampant P, Mortimer K, Pateyron S, Foote TN, Griffiths S, Caboche M, Chalhoub B (2003) Construction and characterization of a hexaploid wheat (Triticum aestivum L.) BAC library from the reference germplasm ‘Chinese Spring’. Cereal Res Commun 31:331–338

    CAS  Google Scholar 

  • Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in Angiosperms. Ann Bot 76:113–176

    Article  CAS  Google Scholar 

  • Bhattamakki D, Dong J, Chhabra AK, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002

    Article  PubMed  Google Scholar 

  • Cenci A, Chantret N, Kong X, Gu Y, Anderson OD, Fahima T, Distelfeld A, Dubcovsky J (2003) Construction and characterization of a half million clone BAC library of durum wheat (Triticum turgidum ssp. durum). Theor Appl Genet 107:931–999

    Article  PubMed  CAS  Google Scholar 

  • Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78:495–504

    Article  CAS  Google Scholar 

  • Cregan PB, Bhagwat AA, Akkaya MS, Rongwen J (1994) Microsatellite fingerprinting and mapping of soybean. Methods Mol Cell Biol 5:49–61

    CAS  Google Scholar 

  • Cregan PB, Mudge J, Fickus EW, Marek LF, Danesh D, Denny R, Shoemaker RC, Matthews BF, Jarvik T, Young ND (1999) Targeted isolation of simple sequence repeat markers through the use of bacterial artificial chromosomes. Theor Appl Genet 98:919–928

    Article  CAS  Google Scholar 

  • Devos KM, Bryan GJ, Collins AJ, Stephenson P, Gale MD (1995) Application of two microsatellite sequences in wheat storage proteins as molecular markers. Theor Appl Genet 90:247–252

    Article  CAS  Google Scholar 

  • Dubcovsky J, Ramakrishna W, SanMiguel PJ, Busso CS, Yan L, Shiloff BA, Bennetzen JL (2001) Comparative sequence analysis of colinear barley and rice bacterial artificial chromosomes. Plant Physiol 125:1342–1353

    Article  PubMed  CAS  Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    CAS  Google Scholar 

  • Faris JD, Fellers JP, Brooks SA, Gill BS (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164:311–321

    PubMed  CAS  Google Scholar 

  • Gale MD, Miller TE (1988) The introduction of alien genetic variation into wheat. In: Lupton FGH (ed) Wheat breeding: its scientific basis, pp 173–210

  • Gao LF, Tang JF, Li HW, Jia JZ (2003) Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol Breed 12:245–261

    Article  CAS  Google Scholar 

  • Humphry ME, Konduru V, Lambridges CJ, Magner T, McIntyre CL, Aitken EAB, Liu CJ (2002) Development of a mungbean (Vigna radiata) RFLP linkage map and its comparision with lablab (Lablab purpureus) reveals a high level of synteny between the two genomes. Theor Appl Genet 105:160–166

    Article  PubMed  CAS  Google Scholar 

  • Janda J, Bartoš J, Šafář J, Kubaláková M, Valárik M, Číhalíková J, Šimková H, Caboche M, Sourdille P, Bernard M, Chaahoub B, Doležel J (2004) Construction of a subgenomic BAC library specific for chromosomes 1D, 4D and 6D of hexaploid wheat. Theor Appl Genet 109:1337–1345

    Article  PubMed  CAS  Google Scholar 

  • Law CN, Snape JW, Worland AJ (1988) Aneuploidy in wheat and its uses in genetic analysis. In: Lupton FGH (ed) Wheat breeding: its scientific basis, pp 71–108

  • Lijavetzhy D, Muzzi G, Wicker T, Keller B, Wing R, Dubcovsky J (1999) Construction and characterization of a bacterial artificial chromosome (BAC) library for the A genome of wheat. Genome 42:1176–1182

    Article  PubMed  Google Scholar 

  • Liu S, Anderson JA (2003) Targeted molecular mapping of a major wheat QTL for Fusarium head blight resistance using wheat ESTs and synteny with rice. Genome 46:817–823

    Article  PubMed  CAS  Google Scholar 

  • Liu CJ, Musial JM (2001) The application of chloroplast DNA clones in identifying maternal donors for polyploidy species of Stylosanthes. Theor Appl Genet 102:73–77

    Article  CAS  Google Scholar 

  • Liu CJ, Atkinson MD, Chinoy CN, Devos KM, Gale MD (1992) Non-homoeologous translocations between group 4, 5 and 7 chromosomes within wheat and rye. Theor Appl Genet 83:305–312

    Article  Google Scholar 

  • Ma Z, Weining S, Sharp PJ, Liu CJ (2000) Non-gridded library: a new approach for BAC (bacterial artificial chromosome) exploitation in hexaploid wheat (Triticum aestivum). Nucleic Acids Res 28(24):e106

    Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTL, cross-platform software for genetic mapping. Mammal Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • Miyagi M, Humphry ME, Ma ZY, Bateson M, Liu CJ (2004) Construction of bacterial artificial chromosome clones and their application in developing PCR-based markers closely linked to a major locus conditioning bruchid resistance in mungbean (Vigna radiata L. Wilczek). Theor Appl Genet 110:151–156

    Article  PubMed  CAS  Google Scholar 

  • Moullet O, Zhang HB, Lagudah ES (1999) Construction and characterization of a large DNA insert library from the D genome of wheat. Theor Appl Genet 99:305–313

    Article  Google Scholar 

  • Mozo T, Dewar K, Dunn P, Ecker JR, Fischer S, Kloska S, Lehrach H, Marra M, Martienssen R, Meier Ewert S, Altmann T (1999) A complete BAC-based physical map of the Arabidopsis thaliana genome. Nat Genet 22:271–275

    Article  PubMed  CAS  Google Scholar 

  • Nilmalgoda SD, Cloutier S, Walichnowski AZ (2003) Construction and characterization of a bacterial artificial chromosome (BAC) library of hexaploid wheat (Triticum aestivum L.) and validation of genome coverage using locus-specific primers. Genome 46:870–878

    Article  PubMed  CAS  Google Scholar 

  • Ogihara Y, Mochida K, Kawaura K, Murai K, Seki M, Kamiya A, Shinozaki K, Carninci P, Hayashizaki Y, Shin-I T, Kohara Y, Yamazaki Y (2004) Construction of a full-length cDNA library from young spikelets of hexaploid wheat and its characteization by large-scale sequencing of expressed sequence tags. Genes Genet Syst 79:227–232

    Article  PubMed  Google Scholar 

  • Rajesh PN, Coyne C, Meksem K, DerSharma K, Gupta V, Muehlbauer FJ (2004) Construction of a HindIII bacterial artificial chromosome library and its use in identification of clones associated with disease resistance in chickpea. Theor Appl Genet 108:663–669

    Article  PubMed  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Mont Agric Exp Stn Res Bull 572:1–58

    Google Scholar 

  • Sears ER (1966) Nullisomic-tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis KR (eds) Chromosome manipulation and plant genetics. Oliver and Boy, London, pp 29–45

    Google Scholar 

  • Sorrells ME, Rota ML, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin, Mahmoud A, Ma X, Gustafson PJ, Qi LL, Echalier B, Gill BS, Matthews DE, Lazo GR, Chao S, Anderson OD, Edwards H, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Zhang D, Nguyen HT, Peng J, Lapitan NV, Gonzalez-Hernandez JL, Anderson JA, Hossain K, Kalavacharla V, Kianian SF, Choi DW, Close TJ, Dilbirligi M, Gill KS, Steber C, Walker-Simmons MK, McGuire PE, Qualset CO (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    PubMed  CAS  Google Scholar 

  • Šafář J, Bartoš J, Janda J, Bellec A, Kubaláková M, Valárik M, Pateyron S, Weiserová J, Tušková R, Číhalíková J, Vrána J, Šimková H, Faivre-Rampant P, Sourdille P, Caboche M, Bernard M, Doležel J, Chalhoub B (2004) Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J 39:960–968

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Weber JL, Zhang G, Tanksley SD (1994) Survey of plant short tandem DNA repeats. Theor Appl Genet 88:1–6

    CAS  Google Scholar 

  • Zhang HB, Choi S, Woo SS, Li Z, Wing RA (1996) Construction and characterization of two rice bacterial artificial chromosome libraries from the parents of a permanent recombinant inbred mapping population. Mol Breed 2:11–24

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Tom Magner and Miki Miyagi for their excellent technical assistance, to Prof. M.D. Gale (John Innes Centre, UK) for constructive discussions and Dr. Evans Lagudah (CSIRO Plant Industry) for the ‘CS’ aneuploid lines. This project was partially supported by the Grains Research and Development Corporation (grant number ET7/CSP00034) of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.J. Liu.

Additional information

Communicated by J. W. Snape

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, B., Wang, D., McIntyre, C. et al. A ‘Chinese Spring’ wheat (Triticum aestivum L.) bacterial artificial chromosome library and its use in the isolation of SSR markers for targeted genome regions. Theor Appl Genet 111, 1489–1494 (2005). https://doi.org/10.1007/s00122-005-0077-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-0077-1

Keywords

Navigation