Skip to main content
Log in

Die Rolle der kochleären Neurotransmitter in Bezug auf Tinnitus

The role of cochlear neurotransmitters in tinnitus

  • HNO-Praxis
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Pathologische Veränderungen der Neurotransmission in der Kochlea, die z. B. durch intensive Lärmbelastung oder ototoxische Substanzen hervorgerufen werden, können zur Entstehung von Tinnitus beitragen. Dabei kommt es an den Schaltstellen zur Veränderung der Effizienz von inhibitorischen und exzitatorischen Neurotransmittern. Glutamat ist der wichtigste afferente Neurotransmitter im Innenohr. Eine massive Glutamatausschüttung als Folge einer Schädigung kann zur Exzitotoxizität und zum irreparablen Zelltod führen. Zu den efferenten Neurotransmittern in der Kochlea zählen Dopamin, γ-Aminobuttersäure (GABA), Acetylcholin (ACH) und Serotonin. Dopamin und GABA sind inhibitorische Transmitter, die vor Glutamatexzitotoxizität schützen. ACH reduziert wie GABA die Steifigkeit der äußeren Haarzellen und führt zu deren Motilitätszunahme. Serotonin ist in der Kochlea ein Neuromodulator der cholinergen und GABA-ergen Innervation und kann glutamaterge Impulse hemmen. Die neuen molekularbiologischen Erkenntnisse über die Neurotransmission in der Kochlea bilden die Grundlage für die Entwicklung neuer Therapieansätze bei Tinnitus. Da es hinsichtlich der Ursachen und der Entstehung verschiedene Formen des Tinnitus gibt, besteht zurzeit die Herausforderung darin, bei den Patienten die individuelle Ursache nachweisen zu können.

Abstract

Pathologic changes in the cochlear neurotransmission, e.g. as a result of intensive noise exposure or ototoxic drugs, can be a factor in the development of tinnitus. The efficiency of inhibitory and excitatory neurotransmitters may then be modulated at the switching points. Glutamate is the most important afferent neurotransmitter within the inner ear. A massive glutamate release induced by cochlear damage may result in excitotoxicity and irrevocable cell death. Efferent cochlear neurotransmitters include dopamine, gammaaminobutyric acid (GABA), acetylcholine (ACH) and serotonin. Dopamine and GABA are inhibitory transmitters that may protect the cochlea from excitotoxicity. ACH, like GABA, reduces the stiffness of the outer hair cells and increases their motility. Serotonin is a neuromodulator of the cholinergic and GABAergic innervation within the cochlea and can inhibit glutamatergic impulses. Our understanding of neurotransmission in the cochlea has been extended by advances in molecular biology, which has given rise to new approaches in the treatment of tinnitus. As there are several types of tinnitus, differing in aetiology and development, our present challenge is to achieve precise identification of the cause in individual cases of tinnitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Arnold T, Oestreicher E, Ehrenberger K, Felix D (1998) GABA(A) receptor modulates the activity of inner hair cell afferents in guinea pig cochlea. Hear Res 125: 147–153

    Article  PubMed  CAS  Google Scholar 

  2. Ashmore J (2002) Biophysics of the cochlea – biomechanics and ion channelopathies. Br Med Bull 63: 59–72

    Article  PubMed  CAS  Google Scholar 

  3. Baldo P, Doree C, Lazzarini R et al. (2006) Antidepressants for patients with tinnitus. Cochrane Database Syst Rev 4: CD003853

    PubMed  Google Scholar 

  4. Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38: 1083–1152

    Article  PubMed  CAS  Google Scholar 

  5. Batta TJ, Panyi G, Szucs A, Sziklai I (2004) Regulation of the lateral wall stiffness by acetylcholine and GABA in the outer hair cells of the guinea pig. Eur J Neurosci 20: 3364–3370

    Article  PubMed  Google Scholar 

  6. Bauer CA, Brozoski TJ (2006) Effect of gabapentin on the sensation and impact of tinnitus. Laryngoscope 116: 675–681

    Article  PubMed  CAS  Google Scholar 

  7. Bustos G, Abarca J, Campusano J et al. (2004) Functional interactions between somatodendritic dopamine release, glutamate receptors and brain-derived neurotrophic factor expression in mesencephalic structures of the brain. Brain Res Brain Res Rev 47: 126–144

    Article  PubMed  CAS  Google Scholar 

  8. Caspary DM, Holder TM, Hughes LF et al. (1999) Age-related changes in GABA(A) receptor subunit composition and function in rat auditory system. Neuroscience 93: 307–312

    Article  PubMed  CAS  Google Scholar 

  9. Chen C, Bobbin RP (1998) P2X receptors in cochlear Deiters‘ cells. Br J Pharmacol 124: 337–344

    Article  PubMed  CAS  Google Scholar 

  10. Chen Z, Ulfendahl M, Ruan R et al. (2004) Protection of auditory function against noise trauma with local caroverine administration in guinea pigs. Hear Res 197: 131–136

    Article  PubMed  CAS  Google Scholar 

  11. Claussen E, Claussen CF, Patil NP (1988) On the effect of magnesium-aspartate in the neurootological therapy for vertigo and tinnitus. In: Claussen CF, Kitane MV, Schlitter N (eds) Vertigo, nausea, tinnitus and hyperacusia in metabolic disorders. Excerpta Medica, Amsterdam, pp 529–532

  12. Cransac H, Peyrin L, Cottet-Emard JM et al. (1996) Aging effects on monoamines in rat medial vestibular and cochlear nuclei. Hear Res 100: 150–156

    Article  PubMed  CAS  Google Scholar 

  13. Cung DD, Stimmel GL (1997) Reemergence of positive symptoms after initial response to risperidone. Pharmacotherapy 17: 383–386

    PubMed  CAS  Google Scholar 

  14. d’Aldin C, Puel JL, Leducq R et al. (1995) Effects of a dopaminergic agonist in the guinea pig cochlea. Hear Res 90: 202–211

    Article  Google Scholar 

  15. Dallos P, He DZ, Lin X et al. (1997) Acetylcholine, outer hair cell electromotility, and the cochlear amplifier. J Neurosci 17: 2212–2226

    PubMed  CAS  Google Scholar 

  16. Darrow KN, Simons EJ, Dodds L, Liberman MC (2006) Dopaminergic innervation of the mouse inner ear: evidence for a separate cytochemical group of cochlear efferent fibers. J Comp Neurol 498: 403–414

    Article  PubMed  CAS  Google Scholar 

  17. Denk DM, Ehrenberger K (1992) Tinnitus: causes, diagnosis, therapy. Wien Med Wochenschr 142: 259–262

    PubMed  CAS  Google Scholar 

  18. Denk DM, Heinzl H, Franz P, Ehrenberger K (1997) Caroverine in tinnitus treatment. A placebo-controlled blind study. Acta Otolaryngol 117: 825–830

    PubMed  CAS  Google Scholar 

  19. Ditzler K (1991) Efficacy and tolerability of memantine in patients with dementia syndrome. A double-blind, placebo controlled trial. Arzneimittelforschung 41: 773–780

    PubMed  CAS  Google Scholar 

  20. Doleviczenyi Z, Halmos G, Repassy G et al. (2005) Cochlear dopamine release is modulated by group II metabotropic glutamate receptors via GABAergic neurotransmission. Neurosci Lett 385: 93–98

    Article  PubMed  CAS  Google Scholar 

  21. Domeisen H, Hotz MA, Hausler R (1998) Caroverine in tinnitus treatment. Acta Otolaryngol 118: 606–608

    Article  PubMed  CAS  Google Scholar 

  22. Eggermont JJ (2005) Tinnitus: neurobiological substrates. Drug Discov Today 10: 1283–1290

    Article  PubMed  Google Scholar 

  23. Ehrenberger K, Denk D-M, Felix D (1995) Rezeptorpharmakologische Modelle für eine kausale Tinnitustherapie. Otorhinolaryngol Nova 5: 148–152

    Article  Google Scholar 

  24. Elgoyhen AB, Vetter DE, Katz E et al. (2001) alpha10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc Natl Acad Sci U S A 98: 3501–3506

    Article  PubMed  CAS  Google Scholar 

  25. Eybalin M (1993) Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol Rev 73: 309–373

    PubMed  CAS  Google Scholar 

  26. Eybalin M, Parnaud C, Geffard M, Pujol R (1988) Immunoelectron microscopy identifies several types of GABA-containing efferent synapses in the guinea-pig organ of Corti. Neuroscience 24: 29–38

    Article  PubMed  CAS  Google Scholar 

  27. Eybalin M, Pujol R (1984) Immunofluorescence with Met-enkephalin and Leu-enkephalin antibodies in the guinea pig cochlea. Hear Res 13: 135–140

    Article  PubMed  CAS  Google Scholar 

  28. Eybalin M, Pujol R (1987) Choline acetyltransferase (ChAT) immunoelectron microscopy distinguishes at least three types of efferent synapses in the organ of Corti. Exp Brain Res 65: 261–270

    Article  PubMed  CAS  Google Scholar 

  29. Felix D, Ehrenberger K (1992) The efferent modulation of mammalian inner hair cell afferents. Hear Res 64: 1–5

    Article  PubMed  CAS  Google Scholar 

  30. Fessenden JD, Schacht J (1998) The nitric oxide/cyclic GMP pathway: a potential major regulator of cochlear physiology. Hear Res 118: 168–176

    Article  PubMed  CAS  Google Scholar 

  31. Fex J, Altschuler RA (1984) Glutamic acid decarboxylase immunoreactivity of olivocochlear neurons in the organ of Corti of guinea pig and rat. Hear Res 15: 123–131

    Article  PubMed  CAS  Google Scholar 

  32. Fex J, Altschuler RA, Kachar B et al. (1986) GABA visualized by immunocytochemistry in the guinea pig cochlea in axons and endings of efferent neurons. Brain Res 366: 106–117

    Article  PubMed  CAS  Google Scholar 

  33. Fischer PA, Jacobi P, Schneider E, Schonberger B (1977) Effects of intravenous administration of memantine in parkinsonian patients. Arzneimittelforschung 27: 1487–1489

    PubMed  CAS  Google Scholar 

  34. Furness DN, Lawton DM (2003) Comparative distribution of glutamate transporters and receptors in relation to afferent innervation density in the mammalian cochlea. J Neurosci 23: 11296–11304

    PubMed  CAS  Google Scholar 

  35. Furness DN, Lehre KP (1997) Immunocytochemical localization of a high-affinity glutamate-aspartate transporter, GLAST, in the rat and guinea-pig cochlea. Eur J Neurosci 9: 1961–1969

    Article  PubMed  CAS  Google Scholar 

  36. Gananca MM, Caovilla HH, Gananca FF et al. (2002) Clonazepam in the pharmacological treatment of vertigo and tinnitus. Int Tinnitus J 8: 50–53

    PubMed  CAS  Google Scholar 

  37. Geisler CD (1998) From sound to synapse. Oxford University Press, New York

  38. Gil-Loyzaga P, Bartolome V, Vicente-Torres A, Carricondo F (2000) Serotonergic innervation of the organ of Corti. Acta Otolaryngol 120: 128–132

    Article  PubMed  CAS  Google Scholar 

  39. Guitton MJ, Wang J, Puel JL (2004) New pharmacological strategies to restore hearing and treat tinnitus. Acta Otolaryngol 124: 411–415

    Article  PubMed  CAS  Google Scholar 

  40. Hakuba N, Koga K, Gyo K et al. (2000) Exacerbation of noise-induced hearing loss in mice lacking the glutamate transporter GLAST. J Neurosci 20: 8750–8753

    PubMed  CAS  Google Scholar 

  41. Halmos G, Lendvai B, Gaborjan A et al. (2002) Simultaneous measurement of glutamate and dopamine release from isolated guinea pig cochlea. Neurochem Int 40: 243–248

    Article  PubMed  CAS  Google Scholar 

  42. Hastak SM (2003) Treatment of memory impairment, vertigo and tinnitus in the elderly with piribedil in an Indian general practice setting. J Indian Med Assoc 101: 500–501

    PubMed  CAS  Google Scholar 

  43. Herrera AJ, Machado A, Cano J (1991) The influence of age on neurotransmitter turnover in the rat’s superior colliculus. Neurobiol Aging 12: 289–294

    Article  PubMed  CAS  Google Scholar 

  44. Hoffman DW, Zamir N, Rubio JA et al. (1985) Proenkephalin and prodynorphin related neuropeptides in the cochlea. Hear Res 17: 47–50

    Article  PubMed  CAS  Google Scholar 

  45. Holmes C, Arranz MJ, Powell JF et al. (1998) 5-HT2A and 5-HT2C receptor polymorphisms and psychopathology in late onset Alzheimer’s disease. Hum Mol Genet 7: 1507–1509

    Article  PubMed  CAS  Google Scholar 

  46. Housley GD, Kanjhan R, Raybould NP et al. (1999) Expression of the P2X(2) receptor subunit of the ATP-gated ion channel in the cochlea: implications for sound transduction and auditory neurotransmission. J Neurosci 19: 8377–8388

    PubMed  CAS  Google Scholar 

  47. Inoue T, Matsubara A, Maruya S et al. (2006) Localization of dopamine receptor subtypes in the rat spiral ganglion. Neurosci Lett 399: 226–229

    Article  PubMed  CAS  Google Scholar 

  48. Joachims Z, Netzer A, Ising H et al. (1993) Oral magnesium supplementation as prophylaxis for noise-induced hearing loss: results of a double blind field study. Schriftenr Ver Wasser Boden Lufthyg 88: 503–516

    PubMed  CAS  Google Scholar 

  49. Johnson RM, Brummett R, Schleuning A (1993) Use of alprazolam for relief of tinnitus. A double-blind study. Arch Otolaryngol Head Neck Surg 119: 842–845

    PubMed  CAS  Google Scholar 

  50. Klinke R (1986) Neurotransmission in the inner ear. Hear Res 22: 235–243

    Article  PubMed  CAS  Google Scholar 

  51. Koyano K, Ohmori H (1996) Cellular approach to auditory signal transmission. Jpn J Physiol 46: 289–310

    Article  PubMed  CAS  Google Scholar 

  52. Kuriyama H, Albin RL, Altschuler RA (1993) Expression of NMDA-receptor mRNA in the rat cochlea. Hear Res 69: 215–220

    Article  PubMed  CAS  Google Scholar 

  53. Kuriyama H, Jenkins O, Altschuler RA (1994) Immunocytochemical localization of AMPA selective glutamate receptor subunits in the rat cochlea. Hear Res 80: 233–240

    Article  PubMed  CAS  Google Scholar 

  54. Lin X, Chen S, Chen P (2000) Activation of metabotropic GABAB receptors inhibited glutamate responses in spiral ganglion neurons of mice. Neuroreport 11: 957–961

    Article  PubMed  CAS  Google Scholar 

  55. Lopez-Gonzalez MA, Muratori Leon ML, Moreno VJ (2003) Sulpiride as initial treatment in tinnitus retraining therapy. Acta Otorrinolaringol Esp 54: 237–241

    PubMed  CAS  Google Scholar 

  56. Lustig LR (2006) Nicotinic acetylcholine receptor structure and function in the efferent auditory system. Anat Rec A Discov Mol Cell Evol Biol 288: 424–434

    PubMed  Google Scholar 

  57. Maison SF, Rosahl TW, Homanics GE, Liberman MC (2006) Functional role of GABAergic innervation of the cochlea: phenotypic analysis of mice lacking GABA(A) receptor subunits alpha 1, alpha 2, alpha 5, alpha 6, beta 2, beta 3, or delta. J Neurosci 26: 10315–10326

    Article  PubMed  CAS  Google Scholar 

  58. Malgrange B, Rigo JM, Lefebvre PP et al. (1997) Diazepam-insensitive GABAA receptors on postnatal spiral ganglion neurones in culture. Neuroreport 8: 591–596

    Article  PubMed  CAS  Google Scholar 

  59. Matsubara A, Laake JH, Davanger S et al. (1996) Organization of AMPA receptor subunits at a glutamate synapse: a quantitative immunogold analysis of hair cell synapses in the rat organ of Corti. J Neurosci 16: 4457–4467

    PubMed  CAS  Google Scholar 

  60. Mazurek B, Haupt H, Gross J (2006) Pharmakotherapie des akuten Tinnitus unter besonderer Berücksichtigung der Rolle von Hypoxie und Ischämie bei der Tinnitusentstehung. HNO 54: 9–15

    Article  PubMed  CAS  Google Scholar 

  61. Meyer J, Gummer AW (2000) Physiological effects of destruction of the tip links of cochlear hair cells. Significance for noise-induced hearing loss. HNO 48: 383–389

    PubMed  CAS  Google Scholar 

  62. Moller AR (2006) Hearing: anatomy, physiology, and disorders of the auditory system. 2nd edn. Academic Press, Amsterdam

  63. Mukherjee J, Christian BT, Dunigan KA et al. (2002) Brain imaging of 18F-fallypride in normal volunteers: blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse 46: 170–188

    Article  PubMed  CAS  Google Scholar 

  64. Niedzielski AS, Safieddine S, Wenthold RJ (1997) Molecular analysis of excitatory amino acid receptor expression in the cochlea. Audiol Neurootol 2: 79–91

    Article  PubMed  CAS  Google Scholar 

  65. Niu X, Canlon B (2006) The signal transduction pathway for the dopamine D1 receptor in the guinea-pig cochlea. Neuroscience 137: 981–990

    Article  PubMed  CAS  Google Scholar 

  66. Nordang L, Oestreicher E, Arnold W, Anniko M (2000) Glutamate is the afferent neurotransmitter in the human cochlea. Acta Otolaryngol 120: 359–362

    Article  PubMed  CAS  Google Scholar 

  67. Oestreicher E, Arnold W, Barun S (2004) Die lokale Applikation von Memantine inhibiert Salizylat induzierten Tinnitus. Abstract, 75. Jahresversammlung der dt. Ges. f. Hals-Nasan-Ohren-Heilkunde, Kopf- und Hals-Chirurgie, 19.–23.Mai, Bad Reichenhall

  68. Oestreicher E, Arnold W, Ehrenberger K, Felix D (1997) Dopamine regulates the glutamatergic inner hair cell activity in guinea pigs. Hear Res 107: 46–52

    Article  PubMed  CAS  Google Scholar 

  69. Oestreicher E, Arnold W, Ehrenberger K, Felix D (1998) Memantine suppresses the glutamatergic neurotransmission of mammalian inner hair cells. ORL J Otorhinolaryngol Relat Spec 60: 18–21

    PubMed  CAS  Google Scholar 

  70. Oliveira JR, Zatz M (1999) The study of genetic polymorphisms related to serotonin in Alzheimer’s disease: a new perspective in a heterogenic disorder. Braz J Med Biol Res 32: 463–467

    PubMed  CAS  Google Scholar 

  71. Ottersen OP, Takumi Y, Matsubara A et al. (1998) Molecular organization of a type of peripheral glutamate synapse: the afferent synapses of hair cells in the inner ear. Prog Neurobiol 54: 127–148

    Article  PubMed  CAS  Google Scholar 

  72. Puel JL (1995) Chemical synaptic transmission in the cochlea. Prog Neurobiol 47: 449–476

    Article  PubMed  CAS  Google Scholar 

  73. Puel JL, Ruel J, Guitton M et al. (2002) The inner hair cell synaptic complex: physiology, pharmacology and new therapeutic strategies. Audiol Neurootol 7: 49–54

    Article  PubMed  CAS  Google Scholar 

  74. Puel JL, Saffiedine S, Gervais d‘ Aldin C et al. (1995) Synaptic regeneration and functional recovery after excitotoxic injury in the guinea pig cochlea. C R Acad Sci III 318: 67–75

    PubMed  CAS  Google Scholar 

  75. Raphael Y, Altschuler RA (2003) Structure and innervation of the cochlea. Brain Res Bull 60: 397–422

    Article  PubMed  Google Scholar 

  76. Rebillard G, Ruel J, Nouvian R et al. (2003) Glutamate transporters in the guinea-pig cochlea: partial mRNA sequences, cellular expression and functional implications. Eur J Neurosci 17: 83–92

    Article  PubMed  CAS  Google Scholar 

  77. Robertson D, Johnstone BM (1978) Efferent transmitter substance in the mammalian cochlea: single neuron support for acetylcholine. Hear Res 1: 31–34

    Article  PubMed  CAS  Google Scholar 

  78. Robinson SK, Viirre ES, Bailey KA et al. (2005) Randomized placebo-controlled trial of a selective serotonin reuptake inhibitor in the treatment of nondepressed tinnitus subjects. Psychosom Med 67: 981–988

    Article  PubMed  CAS  Google Scholar 

  79. Rothlin CV, Lioudyno MI, Silbering AF et al. (2003) Direct interaction of serotonin type 3 receptor ligands with recombinant and native alpha 9 alpha 10-containing nicotinic cholinergic receptors. Mol Pharmacol 63: 1067–1074

    Article  PubMed  CAS  Google Scholar 

  80. Ruel J, Chen C, Pujol R et al. (1999) AMPA-preferring glutamate receptors in cochlear physiology of adult guinea-pig. J Physiol 518: 667–680

    Article  PubMed  CAS  Google Scholar 

  81. Ruel J, Nouvian R, Gervais d‘ Aldin C et al. (2001) Dopamine inhibition of auditory nerve activity in the adult mammalian cochlea. Eur J Neurosci 14: 977–986

    Article  PubMed  CAS  Google Scholar 

  82. Ruel J, Wang J, Rebillard G et al. (2007) Physiology, pharmacology and plasticity at the inner hair cell synaptic complex. Hear Res 227: 19–27

    Article  PubMed  CAS  Google Scholar 

  83. Ryan AF, Brumm D, Kraft M (1991) Occurrence and distribution of non-NMDA glutamate receptor mRNAs in the cochlea. Neuroreport 2: 643–646

    Article  PubMed  CAS  Google Scholar 

  84. Safieddine S, Eybalin M (1992) Co-expression of NMDA and AMPA/kainate receptor mRNAs in cochlear neurones. Neuroreport 3: 1145–1148

    Article  PubMed  CAS  Google Scholar 

  85. Safieddine S, Eybalin M (1995) Expression of mGluR1 alpha mRNA receptor in rat and guinea pig cochlear neurons. Neuroreport 7: 193–196

    PubMed  CAS  Google Scholar 

  86. Salvinelli F, Casale M, Paparo F et al. (2003) Subjective tinnitus, temporomandibular joint dysfunction, and serotonin modulation of neural plasticity: causal or casual triad? Med Hypotheses 61: 446–448

    Article  PubMed  CAS  Google Scholar 

  87. Shemen L (1998) Fluoxetine for treatment of tinnitus. Otolaryngol Head Neck Surg 118: 421

    Article  PubMed  CAS  Google Scholar 

  88. Shimizu I, Prasad C (1991) Relationship between [3H]mazindol binding to dopamine uptake sites and [3H]dopamine uptake in rat striatum during aging. J Neurochem 56: 575–579

    Article  PubMed  CAS  Google Scholar 

  89. Shulman A, Strashun AM, Goldstein BA (2002) GABAA-benzodiazepine-chloride receptor-targeted therapy for tinnitus control: preliminary report. Int Tinnitus J 8: 30–36

    PubMed  CAS  Google Scholar 

  90. Shulman A, Strashun AM, Seibyl JP et al. (2000) Benzodiazepine receptor deficiency and tinnitus. Int Tinnitus J 6: 98–111

    PubMed  CAS  Google Scholar 

  91. Simmons DD (2002) Development of the inner ear efferent system across vertebrate species. J Neurobiol 53: 228–250

    Article  PubMed  Google Scholar 

  92. Simmons DD, Morley BJ (1998) Differential expression of the alpha 9 nicotinic acetylcholine receptor subunit in neonatal and adult cochlear hair cells. Brain Res Mol Brain Res 56: 287–292

    Article  PubMed  CAS  Google Scholar 

  93. Simpson JJ, Davies WE (2000) A review of evidence in support of a role for 5-HT in the perception of tinnitus. Hear Res 145: 1–7

    Article  PubMed  CAS  Google Scholar 

  94. Spoendlin H (1994) Strukturelle Organisation des Innenohres. In: Helms J (Hrsg) Oto-Rhino-Laryngologie in Klinik und Praxis, Bd 1: Ohr. Thieme, Stuttgart, S 32–81

  95. Sziklai I, Szonyi M, Dallos P (2001) Phosphorylation mediates the influence of acetylcholine upon outer hair cell electromotility. Acta Otolaryngol 121: 153–156

    Article  PubMed  CAS  Google Scholar 

  96. Usami S, Hozawa J, Tazawa M et al. (1988) Immunocytochemical study of catecholaminergic innervation in the guinea pig cochlea. Acta Otolaryngol Suppl 447: 36–45

    Article  PubMed  CAS  Google Scholar 

  97. Venero JL, De la Roza C, Machado A, Cano J (1993) Age-related changes on monoamine turnover in hippocampus of rats. Brain Res 631: 89–96

    Article  PubMed  CAS  Google Scholar 

  98. Venero JL, Machado A, Cano J (1991) Age effects on monoamine turnover of the rat substantia nigra. Brain Res 557: 109–114

    Article  PubMed  CAS  Google Scholar 

  99. Vicente-Torres MA, Davila D, Bartolome MV et al. (2003) Biochemical evidence for the presence of serotonin transporters in the rat cochlea. Hear Res 182: 43–47

    Article  PubMed  CAS  Google Scholar 

  100. Warr WB (1975) Olivocochlear and vestibular efferent neurons of the feline brain stem: their location, morphology and number determined by retrograde axonal transport and acetylcholinesterase histochemistry. J Comp Neurol 161: 159–181

    Article  PubMed  CAS  Google Scholar 

  101. Westerberg BD, Roberson JB Jr, Stach BA (1996) A double-blind placebo-controlled trial of baclofen in the treatment of tinnitus. Am J Otolaryngol 17: 896–903

    CAS  Google Scholar 

  102. Zapp JJ (2001) Gabapentin for the treatment of tinnitus: a case report. Ear Nose Throat J 80: 114–116

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mazurek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazurek, B., Stöver, T., Haupt, H. et al. Die Rolle der kochleären Neurotransmitter in Bezug auf Tinnitus. HNO 55, 964–971 (2007). https://doi.org/10.1007/s00106-007-1624-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-007-1624-7

Schlüsselwörter

Keywords

Navigation