Skip to main content
Log in

The Influence of Specimen Type on Tensile Fracture Toughness of Rock Materials

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Up to now, several methods have been proposed to determine the mode I fracture toughness of rocks. In this research, different cylindrical and disc shape samples, namely: chevron bend (CB), short rod (SR), cracked chevron notched Brazilian disc (CCNBD), and semi-circular bend (SCB) specimens were considered for investigating mode I fracture behavior of a marble rock. It is shown experimentally that the fracture toughness values of the tested rock material obtained from different test specimens are not consistent. Indeed, depending on the geometry and loading type of the specimen, noticeable discrepancies can be observed for the fracture toughness of a same rock material. The difference between the experimental mode I fracture resistance results is related to the magnitude and sign of T-stress that is dependent on the geometry and loading configuration of the specimen. For the chevron-notched samples, the critical value of T-stress corresponding to the critical crack length was determined using the finite element method. The CCNBD and SR specimens had the most negative and positive T-stress values, respectively. The dependency of mode I fracture resistance to the T-stress was shown using the extended maximum tangential strain (EMTSN) criterion and the obtained experimental rock fracture toughness data were predicted successfully with this criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Akbardoost, J., Ayatollahi, M. R., Aliha, M. R. M., Pavier, M. J., & Smith, D. J. (2014). Size-dependent fracture behavior of Guiting limestone under mixed mode loading. International Journal of Rock Mechanics and Mining Sciences, 71, 369–380.

    Article  Google Scholar 

  • Aliha, M. R. M., & Ayatollahi, M. R. (2008). On mixed-mode I/II crack growth in dental resin materials. Scripta Materialia, 59(2), 258–261.

    Article  Google Scholar 

  • Aliha, M. R. M. (2009). PhD Thesis, Department of Mechanical Engineering, Iran University of Science and Technology.

  • Aliha, M. R. M., & Ayatollahi, M. R. (2009). Brittle fracture evaluation of a fine grain cement mortar in combined tensile-shear deformation. Fatigue Fract Eng M., 32(12), 987–994.

    Article  Google Scholar 

  • Aliha, M. R. M., & Ayatollahi, M. R. (2010). Geometry effects on fracture behaviour of poly methyl methacrylate. Mater Sci Eng., 527, 526–530.

    Article  Google Scholar 

  • Aliha, M. R. M., & Ayatollahi, M. R. (2011). Mixed mode I/II brittle fracture evaluation of marble using SCB specimen. Procedia Engineering, 10, 311–318.

    Article  Google Scholar 

  • Aliha, M. R. M., & Ayatollahi, M. R. (2013). Two-parameter fracture analysis of SCB rock specimen under mixed mode loading. Engineering Fracture Mechanics, 103, 115–123.

    Article  Google Scholar 

  • Aliha, M. R. M., & Ayatollahi, M. R. (2014). Rock fracture toughness study using cracked chevron notched Brazilian disc specimen under pure modes I and II loading–A statistical approach. Theor Appl Fract Mec., 69, 17–25.

    Article  Google Scholar 

  • Aliha, M. R. M., Ayatollahi, M. R., & Akbardoost, J. (2012a). Typical upper bound–lower bound mixed mode fracture resistance envelopes for rock material. Rock Mechanics and Rock Engineering, 45(1), 65–74.

    Article  Google Scholar 

  • Aliha, M. R. M., Ayatollahi, M. R., & Kharazi, B. (2009). Mode II brittle fracture assessment using ASFPB specimen. International Journal of Fracture, 159, 241–246.

    Article  Google Scholar 

  • Aliha, M. R. M., Ayatollahi, M. R., & Pakzad, R. (2008). Brittle fracture analysis using a ring-shape specimen containing two angled cracks. Int J Fracture, 153(1), 63–68.

    Article  Google Scholar 

  • Aliha, M. R. M., Ayatollahi, M. R., Smith, D. J., & Pavier, M. J. (2010). Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Engineering Fracture Mechanics, 77, 2200–2212.

    Article  Google Scholar 

  • Aliha, M. R. M., Bahmani, A., & Akhondi, S. H. (2015a). Numerical analysis of a new mixed mode I/III fracture test specimen. Engineering Fracture Mechanics, 134, 95–110.

    Article  Google Scholar 

  • Aliha, M. R. M., Bahmani, A., & Akhondi, S. H. (2015b). Determination of mode III fracture toughness for different materials using a new designed test configuration. Mater Design., 86, 863–871.

    Article  Google Scholar 

  • Aliha, M. R. M., Hosseinpour, G. R., & Ayatollahi, M. R. (2013). Application of cracked triangular specimen subjected to three-point bending for investigating fracture behavior of rock materials. Rock Mechanics and Rock Engineering, 46(5), 1023–1034.

    Article  Google Scholar 

  • Aliha, M. R. M., Pakzad, R., & Ayatollahi, M. R. (2014). numerical analyses of straight through cracked flattened Brazilian disc specimen under mixed mode loading. ASCE’s Journal of Engineering Mechanics, 140(2), 219–224.

    Article  Google Scholar 

  • Aliha, M. R. M., Sistaninia, M., Smith, D. J., Pavier, M. J., & Ayatollahi, M. R. (2012b). Geometry effects and statistical analysis of mode I fracture in guiting limestone. International Journal of Rock Mechanics and Mining Sciences, 51, 128–135.

    Article  Google Scholar 

  • Al-Mukhtar, A. M. (2016). Mixed-Mode Crack Propagation in Cruciform Joint using Franc2D. Journal of Failure Analysis and Prevention, 16(3), 326–332.

    Article  Google Scholar 

  • Alzayer, Y., Eichhubl, P., & Laubach, S. E. (2015). Non-linear growth kinematics of opening-mode fractures. Journal of Structural Geology, 74, 31–44.

    Article  Google Scholar 

  • Awaji, H., & Sato, S. (1978). Combined mode fracture toughness measurement by the disc test. J engng Mater Technol., 100, 175–182.

    Article  Google Scholar 

  • Ayatollahi, M. R., & Aliha, M. R. M. (2007a). Fracture toughness study for a brittle rock subjected to mixed mode I/II loading. International Journal of Rock Mechanics and Mining Sciences, 44, 617–624.

    Article  Google Scholar 

  • Ayatollahi, M. R., & Aliha, M. R. M. (2007b). Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading. Computational materials science, 38(4), 660–670.

    Article  Google Scholar 

  • Ayatollahi, M. R., & Aliha, M. R. M. (2008a). On the use of Brazilian disc specimen for calculating mixed mode I-II fracture toughness of rock materials. Engineering Fracture Mechanics, 75(16), 4631–4641.

    Article  Google Scholar 

  • Ayatollahi, M. R., & Aliha, M. R. M. (2008b). Mixed mode fracture analysis of polycrystalline graphite–a modified MTS criterion. Carbon, 46(10), 1302–1308.

    Article  Google Scholar 

  • Ayatollahi, M. R., & Aliha, M. R. M. (2009a). Analysis of a new specimen for mixed mode fracture tests on brittle materials. Engineering Fracture Mechanics, 76(11), 1563–1573.

    Article  Google Scholar 

  • Ayatollahi, M. R., & Aliha, M. R. M. (2009b). Mixed-mode fracture in soda-lime glass analyzed by using the generalized MTS criterion. International Journal of Solids and Structures, 46, 311–321.

    Article  Google Scholar 

  • Ayatollahi, M.R., Aliha, M.R.M., Hassani, M.M. (2006). Mixed mode brittle fracture in PMMA—an experimental study using SCB specimens, Mater Sci Eng. A. 417, 348–356.

  • Ayatollahi, M. R., Aliha, M. R. M., & Saghafi, H. (2011). An improved semi-circular bend specimen for investigating mixed mode brittle fracture. Engineering Fracture Mechanics, 78(1), 110–123.

    Article  Google Scholar 

  • Ayatollahi, M. R., Mahdavi, E., Alborzi, M. J., & Obara, Y. (2015). Stress intensity factors of semi-circular bend specimens with straight-through and chevron notches. Rock Mechanics and Rock Engineering, 49, 1161–1172.

    Article  Google Scholar 

  • Ayatollahi, M. R., & Sedighiani, K. (2010). Crack tip plastic zone under Mode I, Mode II andmixed mode (I + II) conditions. Struct Eng Mech., 36, 575–598.

    Article  Google Scholar 

  • Ayatollahi, M. R., & Sedighiani, K. (2012). Mode I fracture initiation in limestone by strain energy density criterion. Theor Appl Fract Mec., 57, 14–18.

    Article  Google Scholar 

  • Barker, L. M. (1977). A simplified method for measuring plane strain fracture toughness. Engng. Fracture Mech., 9, 361–369.

    Article  Google Scholar 

  • Brantut, N., Heap, M. J., Meredith, P. G., & Baud, P. (2013). Time-dependent cracking and brittle creep in crustal rocks: A review. Journal of Structural Geology, 52, 17–43.

    Article  Google Scholar 

  • Chao, Y. J., Liu, S., & Broviak, B. J. (2001). Brittle fracture: variation of fracture toughness with constraint and crack curving under mode I conditions. Experimental Mechanics, 41, 232–241.

    Article  Google Scholar 

  • Davenport, J. C. W., & Smith, D. J. (1993). A study of superimposed modes I. II and III on PMMA, Fatigue Fract Eng M., 16, 1125–1133.

    Article  Google Scholar 

  • Du, Z. Z., & Hancock, J. W. (1991). The effect of non-singular stresses on crack tip constraint. Journal of the Mechanics and Physics of Solids, 39, 555–567.

    Article  Google Scholar 

  • Engelder, T. (1992), Fractured rock: Rossmanith, HP (editor) 1990. Mechanics of Jointed and Faulted Rock: Proceedings of the International Conference on Mechanics of Jointed and Faulted Rock, Technical University of Vienna, 18–20 April, 1990. AA Balkema, Rotterdam. 994 J. Struct. Geol. 14(3), 380.

  • Erdogan, F., & Sih, G. C. (1963). On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering, 85(5), 19–27.

    Google Scholar 

  • Fowell, R. J. (1995). Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens. Int J Rock Mech Min Sci&GeomechAbstr, 32, 57–64.

    Article  Google Scholar 

  • Giannakopoulos, A. E., & Olsson, M. (1992). Influence of the non-singular stress terms on small-scale supercritical transformation toughness. Journal of the American Ceramic Society, 75, 2761–2764.

    Article  Google Scholar 

  • Griffith, A.A. (1921), The phenomena of rupture and flow in solids, Philosophical transactions of the royal society of london. Series A, containing papers of a mathematical or physical character, 163-198.

  • Hillerborg, A., Modéer, M., & Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Conc Res, 6, 773–781.

    Article  Google Scholar 

  • Irwin, G. R. (1957). Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics, 24, 361–364.

    Google Scholar 

  • Kanninen, M. F., & Popelar, C. H. (1985). Advanced fracture mechanics (Oxford Engineering Science Series (15). New York: Oxford University Press.

    Google Scholar 

  • Kataoka, M., Yoshioka, S., Chob, S.H., Soucek, K., Vavro, L., Obara, Y. (2015), Estimation of fracture toughness of sandstone by three testing methods, Vietrock2015 an ISRM specialized conference, 12-13 March 2015, Hanoi, Vietnam.

  • Kavanagh, J. L., & Pavier, M. J. (2014). Rock interface strength influences fluid-filled fracture propagation pathways in the crust. Journal of Structural Geology, 63, 68–75.

    Article  Google Scholar 

  • Khan, K., & Al-Shayea, N. A. (2000). Effect of specimen geometry and testing method onmixed mode I-II fracture toughness of a limestone rock from Saudi Arabia. Rock Mechanics and Rock Engineering, 33, 179–206.

    Article  Google Scholar 

  • Kong, X. M., Schluter, N., & Dahl, W. (1995). Effect of triaxial stress on mixed-mode fracture. Engineering Fracture Mechanics, 52(2), 379–388.

    Article  Google Scholar 

  • Kumar, B., Chitsiriphanit, S., & Sun, C. T. (2011). Significance of K-dominance zone size and nonsingular stress field in brittle fracture. Engineering Fracture Mechanics, 78, 2042–2051.

    Article  Google Scholar 

  • Kuruppu, M. D., Obara, Y., Ayatollahi, M. R., Chong, K. P., & Funatsu, T. (2014). ISRM-suggested method for determining the mode I staticfracture toughness using semi-circular bend specimen. Rock Mechanics and Rock Engineering, 47(1), 267–274.

    Article  Google Scholar 

  • Larsen, B., Grunnaleite, I., & Gudmundsson, A. (2010). How fracture systems affect permeability development in shallow-water carbonate rocks: an example from the Gargano Peninsula, Italy. Journal of Structural Geology, 32(9), 1212–1230.

    Article  Google Scholar 

  • Lei, X., Masuda, K., Nishizawa, O., Jouniaux, L., Liu, L., Ma, W., & Kusunose, K. (2004). Detailed analysis of acoustic emission activity during catastrophic fracture of faults in rock. Journal of Structural Geology, 26(2), 247–258.

    Article  Google Scholar 

  • Liu, S., & Chao, Y. J. (2003). Variation of fracture toughness with constraint. International Journal of Fracture, 124, 113–117.

    Article  Google Scholar 

  • Matsuki, K., Hasibuan, S. S., & Takahashi, H. (1991). Specimen size requirements for determining the inherent fracture toughness of rocks according to ISRM suggested methods. Journal of Applied Mechanics, 18, 413–427.

    Google Scholar 

  • Melin, S. (2002). The influence of the T-stress on the directional stability of cracks. International Journal of Fracture, 114, 259–265.

    Article  Google Scholar 

  • Ouchterlony, F. (1988). ISRM Suggested methods for determining fracture toughness of rocks. Int J Rock Mech Min Sci Geomech Abstr, 25, 71–96.

    Google Scholar 

  • Schmidt, R.A. (1980). A microcrack model and its significance to hydraulic fracturing and fracture toughness testing, In: Proceeding of 21st US Symposium on Rock Mechanics, 581–590.

  • Sedighiani, K., Mosayebnejad, J., Ehsasi, H., & Sahraei, H. R. (2011). The effect of T-stress on the brittle fracture under mixed mode loading. Engineering Fracture Mechanics, 10, 774–779.

    Google Scholar 

  • Sih, G. C. (1974). Strain-energy-density factor applied to mixed mode crack problems. International Journal of Fracture, 10(3), 305–321.

    Article  Google Scholar 

  • Smith, D. J., Ayatollahi, M. R., & Pavier, M. J. (2001). The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading, Fatigue Fract. Eng. Mater. Struct., 24, 137–150.

    Article  Google Scholar 

  • Smith, D. J., Ayatollahi, M. R., & Pavier, M. J. (2006). On the consequences of T -stress in elastic brittle fracture. Proc R Soc A, 462, 2415–2437.

    Article  Google Scholar 

  • Stead, D., & Wolter, A. (2015). A critical review of rock slope failure mechanisms: The importance of structural geology. Journal of Structural Geology, 74, 1–23.

    Article  Google Scholar 

  • Sun, C. T., & Qian, H. (2009). Brittle fracture beyond the stress intensity factor. J Mech Mater Struct., 4, 743–753.

    Article  Google Scholar 

  • Thiercelin, M., & Roegiers, J. C. (1986). Fracture toughness determination with the modified ring test. International symposium on engineering in complex rock formations (pp. 1–8). China: Beijing.

    Google Scholar 

  • Thomas, A. L., & Pollard, D. D. (1993). The geometry of echelon fractures in rock: implications from laboratory and numerical experiments. Journal of Structural Geology, 15(3), 323–334.

    Article  Google Scholar 

  • Tutluoglu, L., & Keles, C. (2011). Mode I fracture toughness determination with straight notched disk bending method. Int. J. Rock Mech. & Min. Sci., 48, 1248–1261.

    Article  Google Scholar 

  • Ueda, Y., Ikeda, K., Yao, T., & Aoki, M. (1983). Characteristics of brittle fracture under general combined modes including those under bi-axial tensile loads. Engineering Fracture Mechanics, 18, 1131–1158.

    Article  Google Scholar 

  • Ueno, K.,Funatsu, T., Shimada, H., Sasaoka, T., Matsui, K. (2013). Effect of Specimen Size on mode I fracture toughness by SCB test, The 11th International Conference on mining, Materials and Petroleum Engineering, Chiang Mai, Thailand.

  • Wang, C., Zhu, Z. M., & Liu, H. J. (2016). On the I-II mixed mode fracture of granite using four-point bend specimen. Fatigue & Fracture of Engineering Materials & Structures, 39(10), 1193–1203.

    Article  Google Scholar 

  • Williams, M. L. (1957). On the stress distribution at the base of a stationary crack. Journal of Applied Mechanics, 24, 109–114.

    Google Scholar 

  • Williams, J. G., & Ewing, P. D. (1972). Fracture under complex stress— the angled crack problem. International Journal of Fracture, 8, 441–446.

    Google Scholar 

  • Wu, H. C. (1974). Dual failure criterion for plane concrete. J. Engng Mech. Div ASCE, 100, 1167–1181.

    Google Scholar 

  • Xeidakis, G. S., Samaras, I. S., Zacharopoulos, D. A., & Papakaliatakis, G. E. (1996). Crack growth in a mixed-mode loading on marble beams under three point bending. International Journal of Fracture, 79(2), 197–208.

    Article  Google Scholar 

  • Zou, Y., Li, J., He, L., & Zhao, J. (2016). Wave Propagation in the Vicinities of Rock Fractures Under Obliquely Incident Wave. Rock Mechanics and Rock Engineering, 49(5), 1789–1802.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Mohammad Aliha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliha, M.R.M., Mahdavi, E. & Ayatollahi, M.R. The Influence of Specimen Type on Tensile Fracture Toughness of Rock Materials. Pure Appl. Geophys. 174, 1237–1253 (2017). https://doi.org/10.1007/s00024-016-1458-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1458-x

Keywords

Navigation