Skip to main content
Log in

Higher-Order Global Regularity of an Inviscid Voigt-Regularization of the Three-Dimensional Inviscid Resistive Magnetohydrodynamic Equations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We prove existence, uniqueness, and higher-order global regularity of strong solutions to a particular Voigt-regularization of the three-dimensional inviscid resistive magnetohydrodynamic (MHD) equations. Specifically, the coupling of a resistive magnetic field to the Euler-Voigt model is introduced to form an inviscid regularization of the inviscid resistive MHD system. The results hold in both the whole space \({\mathbb{R}^3}\) and in the context of periodic boundary conditions. Weak solutions for this regularized model are also considered, and proven to exist globally in time, but the question of uniqueness for weak solutions is still open. Furthermore, we show that the solutions of the Voigt regularized system converge, as the regularization parameter \({\alpha \rightarrow 0}\), to strong solutions of the original inviscid resistive MHD, on the corresponding time interval of existence of the latter. Moreover, we also establish a new criterion for blow-up of solutions to the original MHD system inspired by this Voigt regularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev spaces, 2nd edn. Pure and Applied Mathematics, vol. 140, Elsevier, Amsterdam (2003)

  2. Alekseev, G.V.: Solvability of a homogeneous initial-boundary value problem for equations of magnetohydrodynamics of an ideal fluid. Dinamika Sploshn. Sredy 57, 3–20 (1982)

    Google Scholar 

  3. Böhm M.: On Navier-Stokes and Kelvin-Voigt equations in three dimensions in interpolation spaces. Math. Nachr. 155, 151–165 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cao C., Rammaha M.A., Titi E.S.: The Navier-Stokes equations on the rotating 2-D sphere: Gevrey regularity and asymptotic degrees of freedom. Z. Angew. Math. Phys. 50(3), 341–360 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cao C., Rammaha M.A., Titi E.S.: Gevrey regularity for nonlinear analytic parabolic equations on the sphere. J. Dynam. Differ. Equ. 12(2), 411–433 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cao Y., Lunasin E., Titi E.S.: Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models. Commun. Math. Sci. 4(4), 823–848 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Carroll R.W., Showalter R.E.: Singular and degenerate cauchy problems. In: Mathematics in Science and Engineering, vol. 127, Academic Press (Harcourt Brace Jovanovich Publishers), New York (1976)

  8. Catania D.: Global existence for a regularized magnetohydrodynamic-α model. Ann. Univ. Ferrara Sez. VII Sci. Math. 56(1), 1–20 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Catania D., Secchi P.: Global existence for two regularized mhd models in three space-dimension. Port. Math. 68(1), 41–52 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability, The International Series of Monographs on Physics, Clarendon Press, Oxford (1961)

  11. Chen S., Foias C., Holm D.D., Olson E., Titi E.S., Wynne S.: Camassa-Holm equations as a closure model for turbulent channel and pipe flow. Phys. Rev. Lett. 81(24), 5338–5341 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Chen, S., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S.: The Camassa-Holm equations and turbulence. Phys. D 133(1–4), 49–65 (1999); Predictability: quantifying uncertainty in models of complex phenomena (Los Alamos, NM, 1998)

    Google Scholar 

  13. Chen, S., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S.: A connection between the Camassa-Holm equations and turbulent flows in channels and pipes. Phys. Fluids 11(8), 2343-2353 (1999); The International Conference on Turbulence (Los Alamos, NM, 1998)

    Google Scholar 

  14. Cheskidov A., Holm D.D., Olson E., Titi E.S.: On a Leray-α model of turbulence. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461(2055), 629–649 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Constantin, P., Foias, C.: Navier-Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago (1988)

  16. Davidson, P.A.:An introduction to magnetohydrodynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2001)

  17. DiBenedetto E., Showalter R.E.: Implicit degenerate evolution equations and applications. SIAM J. Math. Anal. 12(5), 731–751 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  18. Duvaut G., Lions J.-L.: Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Ration. Mech. Anal. 46, 241–279 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ebrahimi, M.A., Holst, M., Lunasin, E.: The Navier-Stokes-Voight model for image inpainting. IMA J. Appl. Math. 126 (2012)

  20. Evans, L.C.: Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence (1998)

  21. Ferrari A.B., Titi E.S.: Gevrey regularity for nonlinear analytic parabolic equations. Comm. Partial Differ. Equ. 23(1–2), 1–16 (1998)

    MATH  MathSciNet  Google Scholar 

  22. Foias C., Holm D.D., Titi E.S.: The three-dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory. J. Dynam. Differ. Equ. 14(1), 1–35 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Foias, C., Manley, O., Rosa, R., Temam, R.: Navier-Stokes equations and turbulence, Encyclopedia of Mathematics and its Applications, vol. 83, Cambridge University Press, Cambridge (2001)

  24. Foias C., Temam R.: Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Funct. Anal. 87(2), 359–369 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Holm, D.D., Titi, E.S.: Computational models of turbulence: The LANS-α model and the role of global analysis. SIAM News 38(7), (2005) (feature article)

  26. Ilyin A.A., Lunasin E.M., Titi E.S.: A modified-Leray-α subgrid scale model of turbulence. Nonlinearity 19(4), 879–897 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Kalantarov V.K., Levant B., Titi E.S.: Gevrey regularity for the attractor of the 3D Navier-Stokes-Voight equations. J. Nonlinear Sci. 19(2), 133–152 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Kalantarov V.K., Titi E.S.: Global attractors and determining modes for the 3d Navier-Stokes-Voight equations. Chin. Ann. Math. B 30(6), 697–714 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Khouider B., Titi E.S.: An inviscid regularization for the surface quasi-geostrophic equation. Comm. Pure Appl. Math. 61(10), 1331–1346 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kukavica I., Vicol V.: On the radius of analyticity of solutions to the three-dimensional Euler equations. Proc. Amer. Math. Soc. 137(2), 669–677 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Labovsky A., Trenchea C.: Large eddy simulation for turbulent magnetohydrodynamic flows. J. Math. Anal. Appl. 377(2), 516–533 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Larios, A., Lunasin, E., Titi, E.S.: Global well-posedness for the 2d Boussinesq system without heat diffusion and with either anisotropic viscosity or inviscid Voigt-α regularization. arXiv:1010.5024v1 (2010) (submitted)

  33. Larios, A., Titi, E.S.: On the higher-order global regularity of the inviscid Voigt-regularization of three-dimensional hydrodynamic models. Discret. Cont. Dyn. Syst. Ser. B 14 (2/3 #15), 603–627 (2010)

    Google Scholar 

  34. Layton, W., Lewandowski, R.: On a well-posed turbulence model. Discret. Cont. Dyn. Syst. Ser. B 6(1), 111–128 (2006) (electronic)

    Google Scholar 

  35. Levant B., Ramos F., Titi E.S.: On the statistical properties of the 3d incompressible Navier-Stokes-Voigt model. Commun. Math. Sci. 8(1), 277–293 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. Levermore C.D., Oliver M.: Analyticity of solutions for a generalized Euler equation. J. Differ. Equ. 133(2), 321–339 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Lions, J.-L., Magenes, E.: Non-homogeneous boundary value problems and applications, vol. II, Springer, Verlag (1972); Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 182

  38. Majda, A.J., Bertozzi, A.L.: Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, vol. 27, Cambridge University Press, Cambridge (2002)

  39. Marchioro, C., Pulvirenti, M.: Mathematical theory of incompressible nonviscous fluids, Applied Mathematical Sciences, vol. 96, Springer, Verlag (1994)

  40. Oliver M., Titi E.S.: Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in R n. J. Funct. Anal. 172(1), 1–18 (2000)

  41. Oskolkov, A.P.: Some quasilinear systems that arise in the study of the motion of viscous fluids. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 52, 128–157, (1975) 219; Boundary value problems of mathematical physics, and related questions in the theory of functions 8

  42. Paicu M., Vicol V.: Analyticity and Gevrey-class regularity for the second-grade fluid equations. J. Math. Fluid Mech. 13(4), 533–555 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. Peszyńska M., Showalter R., Yi S.-Y.: Homogenization of a pseudoparabolic system. Appl. Anal. 88(9), 1265–1282 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  44. Ramos F., Titi E.S.: Invariant measures for the 3D Navier-Stokes-Voigt equations and their Navier-Stokes limit. Discret Cont. Dyn. Syst. 28(1), 375–403 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  45. Robinson, J.C.: Infinite-dimensional dynamical systems. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2001), An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors

  46. Rodino L.: Linear partial differential operators in Gevrey spaces. World Scientific Publishing Co. Inc., River Edge (1993)

    Book  MATH  Google Scholar 

  47. Schmidt P.G.: On a magnetohydrodynamic problem of Euler type. J. Differ. Equ. 74(2), 318–335 (1988)

    Article  ADS  MATH  Google Scholar 

  48. Secchi P.: On the equations of ideal incompressible magnetohydrodynamics. Rend. Sem. Mat. Univ. Padova 90, 103–119 (1993)

    MATH  MathSciNet  Google Scholar 

  49. Showalter R.E.: Local regularity of solutions of Sobolev-Galpern partial differential equations. Pac. J. Math. 34, 781–787 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  50. Showalter R.E.: Well-posed problems for a partial differential equation of order 2m + 1. SIAM J. Math. Anal. 1, 214–231 (1970)

    Google Scholar 

  51. Showalter R.E.: Existence and representation theorems for a semilinear Sobolev equation in Banach space. SIAM J. Math. Anal. 3, 527–543 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  52. Showalter R.E.: Nonlinear degenerate evolution equations and partial differential equations of mixed type. SIAM J. Math. Anal. 6, 25–42 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  53. Showalter R.E.: The Sobolev equation. II. Appl. Anal. 5(2), 81–99 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  54. Temam, R.: Navier-Stokes equations and nonlinear functional analysis, 2nd edn. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 66, Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1995)

  55. Temam, R.: Navier-Stokes equations: theory and numerical analysis. AMS Chelsea Publishing, Providence (2001) (Theory and numerical analysis, Reprint of the 1984 edition)

  56. Wang X.M.: A remark on the characterization of the gradient of a distribution. Appl. Anal. 51(1-4), 35–40 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Larios.

Additional information

Communicated by H. Beirão da Veiga

The authors are thankful for the warm hospitality of the Institute for Mathematics and its Applications (IMA), University of Minnesota, where part of this work was completed. This work was supported in part by the NSF grants no. DMS-0708832, DMS-1009950. E.S.T. also acknowledges the kind hospitality of the Freie Universität - Berlin, and the support of the Minerva Stiftung/Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larios, A., Titi, E.S. Higher-Order Global Regularity of an Inviscid Voigt-Regularization of the Three-Dimensional Inviscid Resistive Magnetohydrodynamic Equations. J. Math. Fluid Mech. 16, 59–76 (2014). https://doi.org/10.1007/s00021-013-0136-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-013-0136-3

Mathematics Subject Classification (2010)

Keywords

Navigation