Skip to main content

Advertisement

Log in

Human motor neuron generation from embryonic stem cells and induced pluripotent stem cells

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Motor neuron diseases (MNDs) are a group of neurological disorders that selectively affect motor neurons. There are currently no cures or efficacious treatments for these diseases. In recent years, significant developments in stem cell research have been applied to MNDs, particularly regarding neuroprotection and cell replacement. However, a consistent source of motor neurons for cell replacement is required. Human embryonic stem cells (hESCs) could provide an inexhaustible supply of differentiated cell types, including motor neurons that could be used for MND therapies. Recently, it has been demonstrated that induced pluripotent stem (iPS) cells may serve as an alternative source of motor neurons, since they share ES characteristics, self-renewal, and the potential to differentiate into any somatic cell type. In this review, we discuss several reproducible methods by which hESCs or iPS cells are efficiently isolated and differentiated into functional motor neurons, and possible clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

MNDs:

Motor neuron diseases

hESCs:

Human embryonic stem cells

hiPSC:

Human induced pluripotent stem cells

CNS:

Central nervous system

ALS:

Amyotrophic lateral sclerosis

SMA:

Spinal muscular atrophy

NE:

Neuroepithelial

EBs:

Embryoid bodies

MEF:

Mouse embryonic fibroblasts

hSCs:

Human stem cells

bFGF:

Fibroblast growth factor

RA:

Retinoic acid

Shh:

Sonic hedgehog

cAMP:

Cyclic adenosine monophosphate

BDNF:

Brain-derived neurotrophic factor

GDNF:

Glial-derived neurotrophic factor

p75-NGFR:

Nerve growth factor receptor

References

  1. Smith J, Jones M Jr, Houghton L (1999) Future of health insurance. N Engl J Med 965:325–329

    Google Scholar 

  2. Dion PA, Daoud H, Rouleau GA (2009) Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nat Rev Genet 11:769–782

    Article  Google Scholar 

  3. Miller RG, Mitchell JD, Lyon M, Moore DH (2007) Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev (1):CD001447

  4. Tripathi VB, Al-Chalabi A (2008) Molecular insights and therapeutic targets in amyotrophic lateral sclerosis. CNS Neurol Disord Drug Targets 7(1):11–19

    Article  CAS  PubMed  Google Scholar 

  5. Ogino S, Leonard DG, Rennert H, Ewens WJ, Wilson RB (2002) Genetic risk assessment in carrier testing for spinal muscular atrophy. Am J Med Genet 110:301–307

    Article  PubMed  Google Scholar 

  6. Broom WJ, Auwarter KE, Ni J, Russel DE, Yeh LA, Maxwell MM, Glicksman M, Kazantsev AG, Brown RH Jr (2006) Two approaches to drug discovery in SOD1-mediated ALS. J Biomol Screen 11:729–735

    Article  CAS  PubMed  Google Scholar 

  7. Rubin LL (2008) Stem cells and drug discovery: the beginning of a new era? Cell 132:549–552

    Article  CAS  PubMed  Google Scholar 

  8. Gao J, Coggeshall RE, Tarasenko YI, Wu P (2005) Human neural stem cell-derived cholinergic neurons innervate muscle in motoneuron deficient adult rats. Neuroscience 131:257–262

    Article  CAS  PubMed  Google Scholar 

  9. Corti S, Nizzardo M, Nardini M, Donadoni C, Salani S, Ronchi D, Simone C, Falcone M, Papadimitriou D, Locatelli F, Mezzina N, Gianni F, Bresolin N, Comi GP (2010) Embryonic stem cell-derived neural stem cells improve spinal muscular atrophy phenotype in mice. Brain 133(Pt 2):465–481

    Article  PubMed  Google Scholar 

  10. Harper JM, Krishnan C, Darman JS, Deshpande DM, Peck S, Shats I, Backovic S, Rothstein JD, Kerr DA (2004) Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats. Proc Natl Acad Sci USA 101(18):7123–7128

    Article  CAS  PubMed  Google Scholar 

  11. Deshpande DM, Kim YS, Martinez T, Carmen J, Dike S, Shats I, Rubin LL, Drummond J, Krishnan C, Hoke A, Maragakis N, Shefner J, Rothstein JD, Kerr DA (2006) Recovery from paralysis in adult rats using embryonic stem cells. Ann Neurol 60(1):32–44

    Article  CAS  PubMed  Google Scholar 

  12. Corti S, Nizzardo M, Nardini M, Donadoni C, Salani S, Del Bo R, Papadimitriou D, Locatelli F, Mezzina N, Gianni F, Bresolin N, Comi GP (2009) Motoneuron transplantation rescues the phenotype of SMARD1 (spinal muscular atrophy with respiratory distress type 1. J Neurosci 29(38):11761–11771

    Article  CAS  PubMed  Google Scholar 

  13. Silani V, Brioschi A, Braga M, Ciammola A, Zhou FC, Bonifati C, Ratti A, Pizzuti A, Buscaglia M, Scarlato G (1998) Immunomagnetic isolation of human developing motor neurons. NeuroReport 9:1143–1147

    Article  CAS  PubMed  Google Scholar 

  14. Palmer TD, Schwartz PH, Taupin P, Kaspar B, Stein SA, Gage FH (2001) Cell culture. Progenitor cells from human brain after death. Nature 411(6833):42–43

    Article  CAS  PubMed  Google Scholar 

  15. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  16. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399–404

    Article  CAS  PubMed  Google Scholar 

  17. Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, Clark AT, Plath K (2008) Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci 105:2883–2888

    Article  CAS  PubMed  Google Scholar 

  18. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  19. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146

    Article  CAS  PubMed  Google Scholar 

  20. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  21. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321(5893):1218–1221

    Article  CAS  PubMed  Google Scholar 

  22. Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457(7227):277–280

    Article  CAS  PubMed  Google Scholar 

  23. Hu BY, Zhang SC (2009) Differentiation of spinal motor neurons from pluripotent human stem cells. Nat Protoc 4(9):1295–1304

    Article  CAS  PubMed  Google Scholar 

  24. Karumbayaram S, Novitch BG, Patterson M, Umbach JA, Richter L, Lindgren A, Conway AE, Clark AT, Goldman SA, Plath K, Wiedau-Pazos M, Kornblum HI, Lowry WE (2009) Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells 27(4):806–811

    Article  CAS  PubMed  Google Scholar 

  25. Di Giorgio FP, Boulting GL, Bobrowicz S, Eggan KC (2008) Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell 3(6):637–648

    Article  CAS  PubMed  Google Scholar 

  26. Pankratz MT, Li XJ, Lavaute TM, Lyons EA, Chen X, Zhang SC (2007) Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem Cells 25(6):1511–1520

    Article  CAS  PubMed  Google Scholar 

  27. Pankratz MT, Zhang SC (2007) Embryoid bodies and neuroepithelial development. In: Loring JF, Wesselschmidt RL, Schwartz PH (eds) Human stem cell manual, 1st edn. Elsevier, Amsterdam, pp 185–198

  28. Itsykson P, Ilouz N, Turetsky T, Goldstein RS, Pera MF, Fishbein I, Segal M, Reubinoff BE (2005) Derivation of neural precursors from human embryonic stem cells in the presence of noggin. Mol Cell Neurosci 30(1):24–36

    Article  CAS  PubMed  Google Scholar 

  29. Wada T, Honda M, Minami I, Tooi N, Amagai Y, Nakatsuji N, Aiba K (2009) Highly efficient differentiation and enrichment of spinal motor neurons derived from human and monkey embryonic stem cells. PLoS One 4(8):e6722

    Article  PubMed  Google Scholar 

  30. Lee H, Shamy GA, Elkabetz Y, Schofield CM, Harrsion NL, Panagiotakos G, Socci ND, Tabar V, Studer L (2007) Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons. Stem Cells 25(8):1931–1939

    Google Scholar 

  31. Johe KK, Hazel TG, Muller T, Dugich-Djordjevic MM, McKay RD (1996) Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev 10(24):3129–3140

    Article  CAS  PubMed  Google Scholar 

  32. Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS, Llanas RA, Thomson JA (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24:185–187

    Article  CAS  PubMed  Google Scholar 

  33. Erceg S, Laínez S, Ronaghi M, Stojkovic P, Pérez-Aragó MA, Moreno-Manzano V, Moreno-Palanques R, Planells-Cases R, Stojkovic M (2008) Differentiation of human embryonic stem cells to regional specific neural precursors in chemically defined medium conditions. PLoS One 3(5):e2122

    Article  PubMed  Google Scholar 

  34. Marchetto MC, Muotri AR, Mu Y, Smith AM, Cezar GG, Gage FH (2008) Non-cell-autonomous effect of human SOD1 G37R astrocytes on motor neurons derived from human embryonic stem cells. Cell Stem Cell 3(6):649–657

    Article  CAS  PubMed  Google Scholar 

  35. Karumbayaram S, Kelly TK, Paucar AA, Roe AJ, Umbach JA, Charles A, Goldman SA, Kornblum HI, Wiedau-Pazos M (2009) Human embryonic stem cell-derived motor neurons expressing SOD1 mutants exhibit typical signs of motor neuron degeneration linked to ALS. Dis Model Mech 2(3–4):189–195

    Article  CAS  PubMed  Google Scholar 

  36. Li XJ, Du ZW, Zarnowska ED, Pankratz M, Hansen LO, Pearce RA, Su-Chun Zhang SC (2005) Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 23:215–221

    Article  PubMed  Google Scholar 

  37. Li XJ, Hu BY, Jones SA, Zhang YS, Lavaute T, Du ZW, Zhang SC (2008) Directed differentiation of ventral spinal progenitors and motor neurons from human embryonic stem cells by small molecules. Stem Cells 26(4):886–893

    Article  CAS  PubMed  Google Scholar 

  38. Dasen JS, Jessell TM (2009) Hox networks and the origins of motor neuron diversity. Curr Top Dev Biol 88:169–200

    Article  CAS  PubMed  Google Scholar 

  39. Dessaud E, Yang LL, Hill K, Cox B, Ulloa F, Ribeiro A, Mynett A, Novitch BG, Briscoe J (2007) Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450(7170):717–720

    Article  CAS  PubMed  Google Scholar 

  40. Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1(1):20–29

    Article  CAS  PubMed  Google Scholar 

  41. Shirasaki R, Pfaff SL (2002) Transcriptional codes and the control of neuronal identity. Annu Rev Neurosci 25:251–281

    Article  CAS  PubMed  Google Scholar 

  42. Novitch BG, Chen AI, Jessell TM (2001) Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 31(5):773–789

    Article  CAS  PubMed  Google Scholar 

  43. Vallstedt A, Muhr J, Pattyn A, Pierani A, Mendelsohn M, Sander M, Jessell TM, Ericson J (2001) Different levels of repressor activity assign redundant and specific roles to Nkx6 genes in motor neuron and interneuron specification. Neuron 31(5):743–755

    Article  CAS  PubMed  Google Scholar 

  44. Zhou Q, Anderson DJ (2002) The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109(1):61–73

    Article  CAS  PubMed  Google Scholar 

  45. Arber S, Han B, Mendelsohn M, Smith M, Jessell TM, Sockanathan S (1999) Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23(4):659–674

    Article  CAS  PubMed  Google Scholar 

  46. Pfaff SL, Mendelsohn M, Stewart CL, Edlund T, Jessell TM (1996) Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell 84(2):309–320

    Article  CAS  PubMed  Google Scholar 

  47. Sharma K, Sheng HZ, Lettieri K, Li H, Karavanov A, Potter S, Westphal H, Pfaff SL (1998) LIM homeodomain factors Lhx3 and Lhx4 assign subtype identities for motor neurons. Cell 95(6):817–828

    Article  CAS  PubMed  Google Scholar 

  48. Thaler J, Harrison K, Sharma K, Lettieri K, Kehrl J, Pfaff SL (1999) Active suppression of interneuron programs within developing motor neurons revealed by analysis of homeodomain factor HB9. Neuron 23(4):675–687

    Article  CAS  PubMed  Google Scholar 

  49. Thaler JP, Koo SJ, Kania A, Lettieri K, Andrews S, Cox C, Jessell TM, Pfaff SL (2004) A postmitotic role for Isl-class LIM homeodomain proteins in the assignment of visceral spinal motor neuron identity. Neuron 41(3):337–350

    Article  CAS  PubMed  Google Scholar 

  50. Dasen JS, Tice BC, Brenner-Morton S, Jessell TM (2005) A Hox regulatory network establishes motor neuron pool identity and target-muscle connectivity. Cell 123(3):477–491

    Article  CAS  PubMed  Google Scholar 

  51. Dasen JS, Jessell TM (2009) Hox networks and the origins of motor neuron diversity. Curr Top Dev Biol 88:169–200

    Article  CAS  PubMed  Google Scholar 

  52. Soundararajan P, Miles GB, Rubin LL, Brownstone RM, Rafuse VF (2006) Motoneurons derived from embryonic stem cells express transcription factors and develop phenotypes characteristic of medial motor column neurons. J Neurosci 26(12):3256–3268

    Article  CAS  PubMed  Google Scholar 

  53. Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110(3):385–397

    Article  CAS  PubMed  Google Scholar 

  54. Maden M (2007) Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 8(10):755–765

    Article  CAS  PubMed  Google Scholar 

  55. Zhang SC (2006) Neural subtype specification from embryonic stem cells. Brain Pathol 16(2):132–142

    Article  CAS  PubMed  Google Scholar 

  56. Li XJ, Yang D, Zhang SC (2007) Motor neuron and dopamine neuron differentiation. In: Loring JF, Wesselschmidt RL, Schwartz PH (eds) Human stem cell manual. Elsevier, Amsterdam, pp 199–209

    Chapter  Google Scholar 

  57. Lim UM, Sidhu KS, Tuch BE (2006) Derivation of motor neurons from three clonal human embryonic stem cell lines. Curr Neurovasc Res 3(4):281–288

    Article  PubMed  Google Scholar 

  58. Singh Roy N, Nakano T, Xuing L, Kang J, Nedergaard M, Goldman SA (2005) Enhancer-specified GFP-based FACS purification of human spinal motor neurons from embryonic stem cells. Exp Neurol 196(2):224–234

    Article  PubMed  Google Scholar 

  59. Miles GB, Yohn DC, Wichterle H, Jessell TM, Rafuse VF, Brownstone RM (2004) Functional properties of motoneurons derived from mouse embryonic stem cells. J Neurosci 24:7848–7858

    Article  CAS  PubMed  Google Scholar 

  60. Gao BX, Ziskind-Conhaim L (1998) Development of ionic currents underlying changes in action potential waveforms in rat spinal motoneurons. J Neurophysiol 80:3047–3061

    CAS  PubMed  Google Scholar 

  61. Hu BY, Zhang SC (2010) Directed differentiation of neural-stem cells and subtype-specific neurons from hESCs. Methods Mol Biol 636:123–137

    Article  CAS  PubMed  Google Scholar 

  62. Steiner D, Khaner H, Cohen M, Even-Ram S, Gil Y, Itsykson P, Turetsky T, Idelson M, Aizenman E, Ram R, Berman-Zaken Y, Reubinoff B (2010) Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol 28(4):361–364

    Article  CAS  PubMed  Google Scholar 

  63. Vemuri MC, Schimmel T, Colls P, Munne S, Cohen J (2007) Derivation of human embryonic stem cells in xeno-free conditions. Methods Mol Biol 407:1–10

    Article  CAS  PubMed  Google Scholar 

  64. Rodríguez-Pizà I, Richaud-Patin Y, Vassena R, González F, Barrero MJ, Veiga A, Raya A, Belmonte JC (2010) Reprogramming of human fibroblasts to induced pluripotent stem cells under xeno-free conditions. Stem Cells 28(1):36–44

    PubMed  Google Scholar 

  65. Kuhn TB (2003) Growing and working with spinal motor neurons. Methods Cell Biol 71:67–87

    Article  PubMed  Google Scholar 

  66. Berg DK, Fischbach GD (1978) Enrichment of spinal cord cell cultures with motoneurons. J Cell Biol 77:83–98

    Article  CAS  PubMed  Google Scholar 

  67. Schnaar RI, Schaffner AE (1981) Separation of cell types from embryonic chicken and rat spinal cord: characterization of motoneuron-enriched fractions. J Neurosci 1:204–217

    CAS  PubMed  Google Scholar 

  68. Camu W, Henderson CE (1992) Purification of embryonic rat motoneurons by panning on a monoclonal antibody to the low-affinity NGF receptor. J Neurosci Methods 44:59–70

    Article  CAS  PubMed  Google Scholar 

  69. Camu W, Henderson CE (1994) Rapid purification of embryonic rat motoneurons: an in vitro model for studying MND/ALS pathogenesis. J Neurol Sci 124:73–74

    Article  PubMed  Google Scholar 

  70. Gingras M, Gagnon V, Minotti S, Durham HD, Berthod F (2007) Optimized protocols for isolation of primary motor neurons, astrocytes and microglia from embryonic mouse spinal cord. J Neurosci Methods 163:111–118

    Article  CAS  PubMed  Google Scholar 

  71. Strong MJ, Garruto RM (1989) Isolation of fetal mouse motor neurons on discontinuous Percoll density gradients. In Vitro Cell Dev Biol 25:939–945

    Article  CAS  PubMed  Google Scholar 

  72. Arce V, Garces A, de Bovis B, Filippi P, Henderson C, deLapeyrière O (1999) Cardiotrophin-1 requires LIFRbeta to promote survival of mouse motoneurons purified by a novel technique. J Neurosci Res 55:119–126

    Article  CAS  PubMed  Google Scholar 

  73. Barres BA, Silverstein BE, Corey DP, Chun LL (1988) Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron 1(9):791–803

    Article  CAS  PubMed  Google Scholar 

  74. Bloch-Gallego E, Huchet M, Xie FK, Tanaka H, Henderson CE (1991) Survival in vitro of motoneurons identified or purified by novel antibody-based methods is selectively enhanced by muscle-derived factors. Development 111:221–232

    CAS  PubMed  Google Scholar 

  75. Yan Q, Johnson EM Jr (1988) An immunohistochemical study of the nerve growth factor receptor in developing rats. J Neurosci 8(9):3481–3498

    CAS  PubMed  Google Scholar 

  76. Johnson D, Lanahan A, Buck CR, Sehgal A, Morgan C, Mercer E, Bothwell M, Chao M (1986) Expression and structure of the human NGF receptor. Cell 47(4):545–554

    Article  CAS  PubMed  Google Scholar 

  77. Ernfors P, Van De WT, Loring J, Jaenisch R (1995) Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron 14:1153–1164

    Article  CAS  PubMed  Google Scholar 

  78. Wiese S, Metzger F, Holtmann B, Sendtner M (1999) The role of p75NTR in modulating neurotrophin survival effects in developing motoneurons. Eur J Neurosci 11:1668–1676

    Article  CAS  PubMed  Google Scholar 

  79. Silani V, Scarlato G (1993) Molecular biology of neurotrophic factors in the central nervous system. In: Polli EE (ed) Molecular bases of human diseases. Amsterdam, Elsevier, pp 199–206

    Google Scholar 

  80. Silani V, Braga M, Botturi A, Cardin V, Bez A, Pizzuti A, Scarlato G (2001) Human developing motor neurons as a tool to study ALS. Amyotroph Lateral Scler Other Motor Neuron Disord 2(Suppl 1):S69–S76

    Article  PubMed  Google Scholar 

  81. Kordower JH, Mufson EJ (1993) NGF receptor (p75)-immunoreactivity in the developing primate basal ganglia. J Comp Neurol 327(3):359–375

    Article  CAS  PubMed  Google Scholar 

  82. Parker GC, Li X, Anguelov RA, Toth G, Cristescu A, Acsadi G (2008) Survival motor neuron protein regulates apoptosis in an in vitro model of spinal muscular atrophy. Neurotox Res 13(1):39–48

    Article  CAS  PubMed  Google Scholar 

  83. Di Giorgio FP, Carrasco MA, Siao MC, Maniatis T, Eggan K (2007) Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci 10(5):608–614

    Article  CAS  PubMed  Google Scholar 

  84. Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, Przedborski S (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10(5):615–622

    Article  CAS  PubMed  Google Scholar 

  85. Boillée S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312(5778):1389–1392

    Article  PubMed  Google Scholar 

  86. Kazuki Y, Hiratsuka M, Takiguchi M, Osaki M, Kajitani N, Hoshiya H, Hiramatsu K, Yoshino T, Kazuki K, Ishihara C, Takehara S, Higaki K, Nakagawa M, Takahashi K, Yamanaka S, Oshimura M (2010) Complete genetic correction of iPS cells from Duchenne muscular dystrophy. Mol Ther 18(2):386–393

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The financial support of the following research grants to S.C. and G.P.C. is gratefully acknowledged: FSMA and SMA Europe Grant, Telethon grant: GGP09107, “Neuroprotection in Spinal Muscular Atrophy (SMA) using neural stem cells as a therapeutic approach.” We wish to thank the Associazione Amici del Centro Dino Ferrari for their support. We wish to thank Dr. Serena Ghezzi for her help in graphic illustration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nizzardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nizzardo, M., Simone, C., Falcone, M. et al. Human motor neuron generation from embryonic stem cells and induced pluripotent stem cells. Cell. Mol. Life Sci. 67, 3837–3847 (2010). https://doi.org/10.1007/s00018-010-0463-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0463-y

Keywords

Navigation