Skip to main content

Advertisement

Log in

A review on heme oxygenase-1 induction: is it a necessary evil

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Heme oxygenase-1 (HO-1) is considered to be the main protein in diseases arising as a result of oxidative and inflammatory insults. Tremendous research has been carried out on HO-1 since years, pertaining its cytoprotective effect against oxidative injury and other cellular stresses. HO-1, by regulating intracellular levels of pro-oxidant heme, or by other benefits of its by-products such as carbon monoxide (CO) and biliverdin (BV) had become an important candidate protein to be up-regulated to combat diverse stressful events. Although the beneficial effects of HO-1 induction have been reported in a number of cells and tissues, a growing body of evidence indicates that this increased HO-1 expression may lead to the progression of several diseases such as neurodegeneration, carcinogenesis. But it is not clear, what accounts for the increased expression of HO-1 in cells and tissues. The observed friendly role of HO-1 in a wide range of stress conditions since times is now doubtful. Therefore, more studies are needed to elucidate the exact role of HO-1 in various stressful events. Being more concise, elucidating the effect of HO-1 up-regulation on critical genes involved in particular diseases such as cancer will help to a larger extent to comprehend the exact role of HO-1. This review will assist in understanding the dual role (protective and detrimental) of HO-1 and the signaling pathway involved and will help in unraveling the doubtful role of HO-1 induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Maines MD, Gibbs PE. 30 some years of heme oxygenase: from a “molecular wrecking ball” to a “mesmerizing” trigger of cellular events. Biochem Biophys Res Commun. 2005;338:568–77.

    Article  PubMed  CAS  Google Scholar 

  2. Nitti M, Piras S, Marinari UM, Moretta L, Pronzato MA, Furfaro AL. HO-1 induction in cancer progression: a matter of cell adaptation. Antioxidants. 2017;6:29.

    Article  PubMed Central  CAS  Google Scholar 

  3. Hayashi S, Omata Y, Sakamoto H, Higashimoto Y, Hara T, Sagara Y, Noguchi M. Characterization of rat heme oxygenase-3 gene. Implication of processed pseudogenes derived from heme oxygenase-2 gene. Gene. 2004;336:241–50.

    Article  PubMed  CAS  Google Scholar 

  4. Lin Q, Weis S, Yang G, Weng YH, Helston R, et al. Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress. J Biol Chem. 2007;282:20621–33.

    Article  PubMed  CAS  Google Scholar 

  5. Slebos DJ, Ryter SW, van der Toorn M, Liu F, Guo F, et al. Mitochondrial localization and function of heme oxygenase-1 in cigarette smoke-induced cell death. Am J Respir Cell Mol Biol. 2007;36:409–17.

    Article  PubMed  CAS  Google Scholar 

  6. Kapturczak MH, Wasserfall C, Brusko T, Campbell-Thompson M, Ellis TM, et al. Heme oxygenase-1 modulates early inflammatory responses: evidence from the heme oxygenase-1-deficient mouse. Am J Pathol. 2004;165:1045–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bindu S, Pal C, Dey S, Goyal M, Alam A, et al. Translocation of heme oxygenase-1 to mitochondria is a novel cytoprotective mechanism against non-steroidal anti-inflammatory drug-induced mitochondrial oxidative stress, apoptosis, and gastric mucosal injury. J Biol Chem. 2011;286:39387–402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Sacca P, Meiss R, Casas G, Mazza O, Calvo JC, et al. Nuclear translocation of haeme oxygenase-1 is associated to prostate cancer. Br J Cancer. 2007;97:1683–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hsu FF, Yeh CT, Sun YJ, Chiang MT, Lan WM, et al. Signal peptide peptidase-mediated nuclear localization of heme oxygenase-1 promotes cancer cell proliferation and invasion independent of its enzymatic activity. Oncogene. 2015;34:2360–70.

    Article  PubMed  CAS  Google Scholar 

  10. Ryter SW, Alam J, Choi AM. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev. 2006;86:583–650.

    Article  PubMed  CAS  Google Scholar 

  11. Son Y, Lee JH, Chung HT, Pae HO. Therapeutic roles of heme oxygenase-1 in metabolic diseases: curcumin and resveratrol analogues as possible inducers of heme oxygenase-1. Oxid Med Cell Longev. 2013;2013:639541.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Li Volti G, Sacerdoti D, Di Giacomo C, Barcellona ML, Scacco A, et al. Natural heme oxygenase-1 inducers in hepatobiliary function. World J Gastroenterol. 2008;14:6122–32.

    Article  PubMed  CAS  Google Scholar 

  13. Doberer D, Haschemi A, Andreas M, Zapf TC, Clive B, et al. Haem arginate infusion stimulates haem oxygenase-1 expression in healthy subjects. Br J Pharmacol. 2010;161:1751–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Guijarro-Munoz I, Compte M, Alvarez-Cienfuegos A, Alvarez-Vallina L, Sanz L. Lipopolysaccharide activates toll-like receptor 4 (TLR4)-mediated NF-kappaB signaling pathway and proinflammatory response in human pericytes. J Biol Chem. 2014;289:2457–68.

    Article  PubMed  CAS  Google Scholar 

  15. Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Konrad FM, Knausberg U, Hone R, Ngamsri KC, Reutershan J. Tissue heme oxygenase-1 exerts anti-inflammatory effects on LPS-induced pulmonary inflammation. Mucosal Immunol. 2016;9:98–111.

    Article  PubMed  CAS  Google Scholar 

  17. Lee JH, Jung NH, Lee BH, Kim SH, Jun JH. Suppression of heme oxygenase-1 by prostaglandin E2-protein kinase A-A-kinase anchoring protein signaling is central for augmented cyclooxygenase-2 expression in lipopolysaccharide-stimulated RAW 264.7 macrophages. Allergy Asthma Immunol Res. 2013;5:329–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Rushworth SA, MacEwan DJ, O’Connell MA. Lipopolysaccharide-induced expression of NAD(P)H:quinone oxidoreductase 1 and heme oxygenase-1 protects against excessive inflammatory responses in human monocytes. J Immunol. 2008;181:6730–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Camhi SL, Alam J, Wiegand GW, Chin BY, Choi AM. Transcriptional activation of the HO-1 gene by lipopolysaccharide is mediated by 5′ distal enhancers: role of reactive oxygen intermediates and AP-1. Am J Respir Cell Mol Biol. 1998;18:226–34.

    Article  PubMed  CAS  Google Scholar 

  20. Upadhyay S, Dixit M. Role of polyphenols and other phytochemicals on molecular signaling. Oxid Med Cell Longev. 2015;2015:504253.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Mollazadeh H, Cicero AFG, Blesso CN, Pirro M, Majeed M, Sahebkar A. Immune modulation by curcumin: the role of interleukin-10. Crit Rev Food Sci Nutr. 2017:1–13. https://doi.org/10.1080/10408398.2017.1358139

  22. Pae HO, Jeong GS, Jeong SO, Kim HS, Kim SA, et al. Roles of heme oxygenase-1 in curcumin-induced growth inhibition in rat smooth muscle cells. Exp Mol Med. 2007;39:267–77.

    Article  PubMed  CAS  Google Scholar 

  23. Kim SY, Park E, Park JA, Choi BS, Kim S, et al. The plant phenolic diterpene carnosol suppresses sodium nitroprusside-induced toxicity in c6 glial cells. J Agric Food Chem. 2010;58:1543–50.

    Article  PubMed  CAS  Google Scholar 

  24. Kundu J, Chae IG, Chun KS. Fraxetin induces heme oxygenase-1 expression by activation of Akt/Nrf2 or AMP-activated protein kinase alpha/Nrf2 pathway in HaCaT cells. J Cancer Prev. 2016;21:135–43.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Farombi EO, Surh YJ. Heme oxygenase-1 as a potential therapeutic target for hepatoprotection. J Biochem Mol Biol. 2006;39:479–91.

    PubMed  CAS  Google Scholar 

  26. Alam J, Cook JL. How many transcription factors does it take to turn on the heme oxygenase-1 gene? Am J Respir Cell Mol Biol. 2007;36:166–74.

    Article  PubMed  CAS  Google Scholar 

  27. Immenschuh S, Ramadori G. Gene regulation of heme oxygenase-1 as a therapeutic target. Biochem Pharmacol. 2000;60:1121–8.

    Article  PubMed  CAS  Google Scholar 

  28. Chen HG, Xie KL, Han HZ, Wang WN, Liu DQ, Wang GL, Yu YH. Heme oxygenase-1 mediates the anti-inflammatory effect of molecular hydrogen in LPS-stimulated RAW 264.7 macrophages. Int J Surg. 2013;11:1060–6.

    Article  PubMed  Google Scholar 

  29. Otterbein LE, Bach FH, Alam J, Soares M, Tao H, Lu, et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med. 2000;6:422–8.

    Article  PubMed  CAS  Google Scholar 

  30. Morse D, Pischke SE, Zhou Z, Davis RJ, Flavell RA, et al. Suppression of inflammatory cytokine production by carbon monoxide involves the JNK pathway and AP-1. J Biol Chem. 2003;278:36993–8.

    Article  PubMed  CAS  Google Scholar 

  31. Lee TS, Chau LY. Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat Med. 2002;8:240–6.

    Article  PubMed  CAS  Google Scholar 

  32. Hayashi S, Takamiya R, Yamaguchi T, Matsumoto K, Tojo SJ, et al. Induction of heme oxygenase-1 suppresses venular leukocyte adhesion elicited by oxidative stress: role of bilirubin generated by the enzyme. Circ Res. 1999;85:663–71.

    Article  PubMed  CAS  Google Scholar 

  33. Ndisang JF, Jadhav A. Heme oxygenase system enhances insulin sensitivity and glucose metabolism in streptozotocin-induced diabetes. Am J Physiol Endocrinol Metab. 2009;296:E829–41.

    Article  PubMed  CAS  Google Scholar 

  34. Galeotti C, Hegde P, Das M, Stephen-Victor E, Canale F, et al. Heme oxygenase-1 is dispensable for the anti-inflammatory activity of intravenous immunoglobulin. Sci Rep. 2016;6:19592.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Liu Z, Zhou T, Ziegler AC, Dimitrion P, Zuo L. Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxid Med Cell Longev. 2017;2017:2525967.

    PubMed  PubMed Central  Google Scholar 

  36. Chen J. Heme oxygenase in neuroprotection: from mechanisms to therapeutic implications. Rev Neurosci. 2014;25:269–80.

    Article  PubMed  CAS  Google Scholar 

  37. Chen K, Gunter K, Maines MD. Neurons overexpressing heme oxygenase-1 resist oxidative stress-mediated cell death. J Neurochem. 2000;75:304–13.

    Article  PubMed  CAS  Google Scholar 

  38. Takeda A, Perry G, Abraham NG, Dwyer BE, Kutty RK, et al. Overexpression of heme oxygenase in neuronal cells, the possible interaction with Tau. J Biol Chem. 2000;275:5395–9.

    Article  PubMed  CAS  Google Scholar 

  39. Hung SY, Liou HC, Kang KH, Wu RM, Wen CC, et al. Overexpression of heme oxygenase-1 protects dopaminergic neurons against 1-methyl-4-phenylpyridinium-induced neurotoxicity. Mol Pharmacol. 2008;74:1564–75.

    Article  PubMed  CAS  Google Scholar 

  40. Sun GY, Chen Z, Jasmer KJ, Chuang DY, Gu Z, Hannink M, Simonyi A. Quercetin attenuates inflammatory responses in BV-2 microglial cells: role of MAPKs on the Nrf2 pathway and induction of heme oxygenase-1. PloS One. 2015;10:e0141509.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Vairano M, Dello Russo C, Pozzoli G, Tringali G, Preziosi P, Navarra P. A functional link between heme oxygenase and cyclo-oxygenase activities in cortical rat astrocytes. Biochem Pharmacol. 2001;61:437–41.

    Article  PubMed  CAS  Google Scholar 

  42. Chen-Roetling J, Regan RF. Effect of heme oxygenase-1 on the vulnerability of astrocytes and neurons to hemoglobin. Biochem Biophys Res Commun. 2006;350:233–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Song W, Patel A, Han D, Paudel HK, Schipper HM. Heme oxygenase-1 promotes proteosomal degradation of tau and alpha-synuclein in human neuroblastoma cells. Alzheimer Assoc. 2008; 4(Supplement):T410.

    Google Scholar 

  44. Bolisetty S, Traylor A, Zarjou A, Johnson MS, Benavides GA, et al. Mitochondria-targeted heme oxygenase-1 decreases oxidative stress in renal epithelial cells. Am J Physiol Renal Physiol. 2013;305:F255–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, et al. American Heart Association Statistics, S. Stroke Statistics. Heart disease and stroke statistics–2011 update: a report from the. American Heart Association. Circulation. 2011;123:e18–e209.

    Article  PubMed  Google Scholar 

  46. Ewing JF, Raju VS, Maines MD. Induction of heart heme oxygenase-1 (HSP32) by hyperthermia: possible role in stress-mediated elevation of cyclic 3′:5′-guanosine monophosphate. J Pharmacol Exp Ther. 1994;271:408–14.

    PubMed  CAS  Google Scholar 

  47. Yet SF, Perrella MA, Layne MD, Hsieh CM, Maemura K, et al. Hypoxia induces severe right ventricular dilatation and infarction in heme oxygenase-1 null mice. J Clin Invest. 1999;103:R23–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Yet SF, Tian R, Layne MD, Wang ZY, Maemura K, et al. Cardiac-specific expression of heme oxygenase-1 protects against ischemia and reperfusion injury in transgenic mice. Circ Res. 2001;89:168–73.

    Article  PubMed  CAS  Google Scholar 

  49. Wang G, Hamid T, Keith RJ, Zhou G, Partridge CR, et al. Cardioprotective and antiapoptotic effects of heme oxygenase-1 in the failing heart. Circulation. 2010;121:1912–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Tang YL, Qian K, Zhang YC, Shen L, Phillips MI. A vigilant, hypoxia-regulated heme oxygenase-1 gene vector in the heart limits cardiac injury after ischemia-reperfusion in vivo. J Cardiovasc Pharmacol Ther. 2005;10:251–63.

    Article  PubMed  CAS  Google Scholar 

  51. Schillaci G, Pirro M, Ronti T, Gemelli F, Pucci G, et al. Prognostic impact of prolonged ventricular repolarization in hypertension. Arch Int Med. 2006;166:909–13.

    Article  Google Scholar 

  52. Mordukhovich I, Kloog I, Coull B, Koutrakis P, Vokonas P, Schwartz J. Association between particulate air pollution and QT interval duration in an elderly cohort. Epidemiology. 2016;27:284–90.

    PubMed  PubMed Central  Google Scholar 

  53. Grochot-Przeczek A, Kotlinowski J, Kozakowska M, Starowicz K, Jagodzinska J, et al. Heme oxygenase-1 is required for angiogenic function of bone marrow-derived progenitor cells: role in therapeutic revascularization. Antioxid Redox Signal. 2014;20:1677–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Pirro M, Schillaci G, Romagno PF, Mannarino MR, Bagaglia F, et al. Influence of short-term rosuvastatin therapy on endothelial progenitor cells and endothelial function. J Cardiovasc Pharmacol Ther. 2009;14:14–21.

    Article  PubMed  CAS  Google Scholar 

  55. Lin HH, Chen YH, Yet SF, Chau LY. After vascular injury, heme oxygenase-1/carbon monoxide enhances re-endothelialization via promoting mobilization of circulating endothelial progenitor cells. J Thromb Haemost JTH. 2009;7:1401–8.

    Article  PubMed  CAS  Google Scholar 

  56. Bianconi V, Sahebkar A, Kovanen P, Bagaglia F, Ricciuti B, et al. Endothelial and cardiac progenitor cells for cardiovascular repair: a controversial paradigm in cell therapy. Pharmacol Ther. 2018;181:156–68.

    Article  PubMed  CAS  Google Scholar 

  57. Sikorski EM, Hock T, Hill-Kapturczak N, Agarwal A. The story so far: molecular regulation of the heme oxygenase-1 gene in renal injury. Am J Physiol Renal Physiol. 2004;286:F425–441.

    Article  PubMed  CAS  Google Scholar 

  58. Lever JM, Boddu R, George JF, Agarwal A. Heme oxygenase-1 in kidney health and disease. Antioxid Redox Signal. 2016;25:165–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Feitoza CQ, Goncalves GM, Bertocchi AP, Wang PW, Damiao MJ, et al. A role for HO-1 in renal function impairment in animals subjected to ischemic and reperfusion injury and treated with immunosuppressive drugs. Transp Proc. 2007;39:424–6.

    Article  CAS  Google Scholar 

  60. Aizawa T, Ishizaka N, Taguchi J, Nagai R, Mori I, et al. Heme oxygenase-1 is upregulated in the kidney of angiotensin II-induced hypertensive rats: possible role in renoprotection. Hypertension. 2000;35:800–6.

    Article  PubMed  CAS  Google Scholar 

  61. Aycan-Ustyol E, Kabasakal M, Bekpinar S, Alp-Yildirim FI, Tepe O, et al. Vascular function and arginine and dimethylarginines in gentamicin-induced renal failure: a possible effect of heme oxygenase 1 inducer hemin. Can J Physiol Pharmacol. 2017;95:1406–13.

    Article  PubMed  CAS  Google Scholar 

  62. Origassa CS, Camara NO. Cytoprotective role of heme oxygenase-1 and heme degradation derived end products in liver injury. World J Hepatol. 2013;5:541–9.

    Article  PubMed  PubMed Central  Google Scholar 

  63. McNally SJ, Harrison EM, Ross JA, Garden OJ, Wigmore SJ. Curcumin induces heme oxygenase-1 in hepatocytes and is protective in simulated cold preservation and warm reperfusion injury. Transplantation. 2006;81:623–6.

    Article  PubMed  Google Scholar 

  64. Waza. AA, Hamid Z. Majoon-e-Dabeed-ul-Ward protects lung cells against ethanol-induced cell death and activates Nrf2/HO-1 signaling pathway. Int J Res BioSci. 2018;7:1–7.

    Google Scholar 

  65. McCarter SD, Badhwar A, Scott JR, Akyea TG, Bihari A, et al. Remote liver injury is attenuated by adenovirus-mediated gene transfer of heme oxygenase-1 during the systemic inflammatory response syndrome. Microcirculation. 2004;11:587–95.

    Article  PubMed  CAS  Google Scholar 

  66. Sass G, Soares MC, Yamashita K, Seyfried S, Zimmermann WH, et al. Heme oxygenase-1 and its reaction product, carbon monoxide, prevent inflammation-related apoptotic liver damage in mice. Hepatology. 2003;38:909–18.

    Article  PubMed  CAS  Google Scholar 

  67. Wu H, Zhang G, Huang L, Pang H, Zhang N, Chen Y, Wang G. Hepatoprotective effect of polyphenol-enriched fraction from folium microcos on oxidative stress and apoptosis in acetaminophen-induced liver injury in mice. Oxid Med Cell Longev. 2017;2017:3631565.

    PubMed  PubMed Central  Google Scholar 

  68. Tiwari S, Ndisang JF. The heme oxygenase system and type-1 diabetes. Curr Pharm Des. 2014;20:1328–37.

    Article  PubMed  CAS  Google Scholar 

  69. Lee EM, Lee YE, Lee E, Ryu GR, Ko SH, et al. Protective effect of heme oxygenase-1 on high glucose-induced pancreatic beta-cell injury. Diabetes Metab J. 2011;35:469–79.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Castany S, Carcole M, Leanez S, Pol O. The induction of heme oxygenase 1 decreases painful diabetic neuropathy and enhances the antinociceptive effects of morphine in diabetic mice. PloS One. 2016;11:e0146427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Prawan A, Kundu JK, Surh YJ. Molecular basis of heme oxygenase-1 induction: implications for chemoprevention and chemoprotection. Antioxid Redox Signal. 2005;7:1688–703.

    Article  PubMed  CAS  Google Scholar 

  72. Abdalla MY, Ahmad IM, Switzer B, Britigan BE. Induction of heme oxygenase-1 contributes to survival of Mycobacterium abscessus in human macrophages-like THP-1 cells. Redox Biol. 2015;4:328–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Genter MB, Burman DM, Vijayakumar S, Ebert CL, Aronow BJ. Genomic analysis of alachlor-induced oncogenesis in rat olfactory mucosa. Physiol Genom. 2002;12:35–45.

    Article  CAS  Google Scholar 

  74. Gong P, Hu B, Cederbaum AI. Diallyl sulfide induces heme oxygenase-1 through MAPK pathway. Arch Biochem Biophys. 2004;432:252–60.

    Article  PubMed  CAS  Google Scholar 

  75. Nuhn P, Kunzli BM, Hennig R, Mitkus T, Ramanauskas T, et al. Heme oxygenase-1 and its metabolites affect pancreatic tumor growth in vivo. Mol Cancer. 2009;8:37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Dulak J, Deshane J, Jozkowicz A, Agarwal A. Heme oxygenase-1 and carbon monoxide in vascular pathobiology: focus on angiogenesis. Circulation. 2008;117:231–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Goswami A, Ranganathan P, Rangnekar VM. The phosphoinositide 3-kinase/Akt1/Par-4 axis: a cancer-selective therapeutic target. Cancer Res. 2006;66:2889–92.

    Article  PubMed  CAS  Google Scholar 

  78. Banerjee P, Basu A, Wegiel B, Otterbein LE, Mizumura K, et al. Heme oxygenase-1 promotes survival of renal cancer cells through modulation of apoptosis- and autophagy-regulating molecules. J Biol Chem. 2012;287:32113–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Andreadi CK, Howells LM, Atherfold PA, Manson MM. Involvement of Nrf2, p38, B-Raf, and nuclear factor-kappaB, but not phosphatidylinositol 3-kinase, in induction of hemeoxygenase-1 by dietary polyphenols. Mol Pharmacol. 2006;69:1033–40.

    PubMed  CAS  Google Scholar 

  80. Jozkowicz A, Huk I, Nigisch A, Weigel G, Dietrich W, Motterlini R, Dulak J. Heme oxygenase and angiogenic activity of endothelial cells: stimulation by carbon monoxide and inhibition by tin protoporphyrin-IX. Antioxid Redox Signal. 2003;5:155–62.

    Article  PubMed  CAS  Google Scholar 

  81. Mayerhofer M, Florian S, Krauth MT, Aichberger KJ, Bilban M, et al. Identification of heme oxygenase-1 as a novel BCR/ABL-dependent survival factor in chronic myeloid leukemia. Cancer Res. 2004;64:3148–54.

    Article  PubMed  CAS  Google Scholar 

  82. Nowis D, Legat M, Grzela T, Niderla J, Wilczek E, et al. Heme oxygenase-1 protects tumor cells against photodynamic therapy-mediated cytotoxicity. Oncogene. 2006;25:3365–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Hirai K, Sasahira T, Ohmori H, Fujii K, Kuniyasu H. Inhibition of heme oxygenase-1 by zinc protoporphyrin IX reduces tumor growth of LL/2 lung cancer in C57BL mice. Int J Cancer. 2007;120:500–5.

    Article  PubMed  CAS  Google Scholar 

  84. Momtazi AA, Shahabipour F, Khatibi S, Johnston TP, Pirro M, Sahebkar A. Curcumin as a microRNA regulator in cancer: a review. Rev Physiol Biochem Pharmacol. 2016;171:1–38.

    Article  PubMed  CAS  Google Scholar 

  85. Ghattas MH, Chuang LT, Kappas A, Abraham NG. Protective effect of HO-1 against oxidative stress in human hepatoma cell line (HepG2) is independent of telomerase enzyme activity. Int J Biochem Cell Biol. 2002;34:1619–28.

    Article  PubMed  CAS  Google Scholar 

  86. Murakami A, Fujimori Y, Yoshikawa Y, Yamada S, Tamura K, et al. Heme oxygenase-1 promoter polymorphism is associated with risk of malignant mesothelioma. Lung. 2012;190:333–7.

    Article  PubMed  CAS  Google Scholar 

  87. Kikuchi A, Yamaya M, Suzuki S, Yasuda H, Kubo H, et al. Association of susceptibility to the development of lung adenocarcinoma with the heme oxygenase-1 gene promoter polymorphism. Hum Genet. 2005;116:354–60.

    Article  PubMed  CAS  Google Scholar 

  88. Sawa T, Mounawar M, Tatemichi M, Gilibert I, Katoh T, Ohshima H. Increased risk of gastric cancer in Japanese subjects is associated with microsatellite polymorphisms in the heme oxygenase-1 and the inducible nitric oxide synthase gene promoters. Cancer Lett. 2008;269:78–84.

    Article  PubMed  CAS  Google Scholar 

  89. Schipper HM, Cisse S, Stopa EG. Expression of heme oxygenase-1 in the senescent and Alzheimer-diseased brain. Ann Neurol. 1995;37:758–68.

    Article  PubMed  CAS  Google Scholar 

  90. Yu X, Song N, Guo X, Jiang H, Zhang H, Xie J. Differences in vulnerability of neurons and astrocytes to heme oxygenase-1 modulation: implications for mitochondrial ferritin. Sci Rep. 2016;6:24200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Schipper HM, Song W, Zukor H, Hascalovici JR, Zeligman D. Heme oxygenase-1 and neurodegeneration: expanding frontiers of engagement. J Neurochem. 2009;110:469–85.

    Article  PubMed  CAS  Google Scholar 

  92. Schipper HM, Song W. A heme oxygenase-1 transducer model of degenerative and developmental brain disorders. Int J Mol Sci. 2015;16:5400–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Qato MK, Maines MD. Prevention of neonatal hyperbilirubinaemia in non-human primates by Zn-protoporphyrin. Biochem J. 1985;226:51–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Wang J, Dore S. Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain. 2007;130:1643–52.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kadoya C, Domino EF, Yang GY, Stern JD, Betz AL. Preischemic but not postischemic zinc protoporphyrin treatment reduces infarct size and edema accumulation after temporary focal cerebral ischemia in rats. Stroke. 1995;26:1035–8.

    Article  PubMed  CAS  Google Scholar 

  96. Lee DW, Gelein RM, Opanashuk LA. Heme-oxygenase-1 promotes polychlorinated biphenyl mixture aroclor 1254-induced oxidative stress and dopaminergic cell injury. Toxicol Sci. 2006;90:159–67.

    Article  PubMed  CAS  Google Scholar 

  97. Ursu ON, Sauter M, Ettischer N, Kandolf R, Klingel K. Heme oxygenase-1 mediates oxidative stress and apoptosis in coxsackievirus B3-induced myocarditis. Cell Physiol Biochem. 2014;33:52–66.

    Article  PubMed  CAS  Google Scholar 

  98. Kang J, Jeong MG, Oh S, Jang EJ, Kim HK, Hwang ES. A FoxO1-dependent, but NRF2-independent induction of heme oxygenase-1 during muscle atrophy. FEBS Lett. 2014;588:79–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Council of Scientific and Industrial Research (CSIR) GOI, New Delhi is acknowledged for providing fellowship to Ajaz Ahmad Waza (CSIR-RA fellow) (9/251 (0077)/2k17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajaz Ahmad Waza.

Ethics declarations

Conflict of interest

The authors declare that no competing interests exist.

Additional information

Responsible Editor: Yoshiya Tanaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waza, A.A., Hamid, Z., Ali, S. et al. A review on heme oxygenase-1 induction: is it a necessary evil. Inflamm. Res. 67, 579–588 (2018). https://doi.org/10.1007/s00011-018-1151-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-018-1151-x

Keywords

Navigation