Skip to main content

Advertisement

Log in

AMPK activation reduces vascular permeability and airway inflammation by regulating HIF/VEGFA pathway in a murine model of toluene diisocyanate-induced asthma

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Occupational asthma is characterized by airway inflammation and hyperresponsiveness associated with increased vascular permeability. AMP-activated protein kinase (AMPK) has been suggested to be a novel signaling molecule modulating inflammatory responses.

Objective

We sought to evaluate the involvement of AMPK in pathogenesis of occupational asthma and more specifically investigate the effect and molecular mechanisms of AMPK activation in regulating vascular permeability.

Methods

The mechanisms of action and therapeutic potential of an AMPK activator, 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) were tested in a murine model of toluene diisocyanate (TDI)-induced asthma.

Results

AICAR attenuated airway inflammation and hyperresponsiveness increased by TDI inhalation. Moreover, TDI-induced increases in levels of hypoxia-inducible factor (HIF)-1α, HIF-2α, vascular endothelial growth factor A (VEGFA), and plasma exudation were substantially decreased by treatment with AICAR. Our results also showed that VEGFA expression was remarkably reduced by inhibition of HIF-1α and HIF-2α with 2-methoxyestradiol (2ME2) and that an inhibitor of VEGFA activity, CBO-P11 as well as 2ME2 significantly suppressed vascular permeability, airway infiltration of inflammatory cells, and airway hyperresponsiveness induced by TDI. In addition, AICAR reduced reactive oxygen species (ROS) generation and levels of malondialdehyde and T-helper type 2 cytokines (IL-4, IL-5, and IL-13), while this agent enhanced expression of an anti-inflammatory cytokine, IL-10.

Conclusions

These results suggest that AMPK activation ameliorates airway inflammatory responses by reducing vascular permeability via HIF/VEGFA pathway as well as by inhibiting ROS production and thus may be a possible therapeutic strategy for TDI-induced asthma and other airway inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Ab:

Antibody

AHR:

Airway hyperresponsiveness

AICAR:

5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside

AMPK:

AMP-activated protein kinase

BAL:

Bronchoalveolar lavage

CMC:

Carboxymethylcellulose

DCF:

Dichlorofluorescein

DMSO:

Dimethylsulfoxide

EBD:

Evans blue dye

HIF:

Hypoxia-inducible factor

MDA:

Malondialdehyde

2ME2:

2-Methoxyestradiol

p-AMPK:

Phosphorylated AMPK

PBS:

Phosphate buffered saline

ROS:

Reactive oxygen species

Rrs:

Respiratory system resistance

TDI:

Toluene diisocyanate

Th2:

T-helper type 2

Treg:

Regulatory T

VEGFA:

Vascular endothelial growth factor A

References

  1. Gautrin D, Newman-Taylor AJ, Nordman H, Malo JL. Controversies in epidemiology of occupational asthma. Eur Respir J. 2003;22:551–9.

    Article  PubMed  CAS  Google Scholar 

  2. Maestrelli P, Boschetto P, Fabbri LM, Mapp CE. Mechanisms of occupational asthma. J Allergy Clin Immunol. 2009;123:531–42.

    Article  PubMed  Google Scholar 

  3. Carling D. AMP-activated protein kinase: balancing the scales. Biochimie. 2005;87:87–91.

    Article  PubMed  CAS  Google Scholar 

  4. Nath N, Giri S, Prasad R, Salem ML, Singh AK, Singh I. 5-Aminoimidazole-4-carboxamide ribonucleoside: a novel immunomodulator with therapeutic efficacy in experimental autoimmune encephalomyelitis. J Immunol. 2005;175:566–74.

    PubMed  CAS  Google Scholar 

  5. Peairs A, Radjavi A, Davis S, Li L, Ahmed A, Giri S, et al. Activation of AMPK inhibits inflammation in MRL/lpr mouse mesangial cells. Clin Exp Immunol. 2009;156:542–51.

    Article  PubMed  CAS  Google Scholar 

  6. Wong AK, Howie J, Petrie JR, Lang CC. AMP-activated protein kinase pathway: a potential therapeutic target in cardiometabolic disease. Clin Sci (Lond). 2009;116:607–20.

    Article  CAS  Google Scholar 

  7. Kim AS, Miller EJ, Young LH. AMP-activated protein kinase: a core signalling pathway in the heart. Acta Physiol (Oxf). 2009;196:37–53.

    Article  CAS  Google Scholar 

  8. Corton JM, Gillespie JG, Hawley SA, Hardie DG. 5-Aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem. 1995;229:558–65.

    Article  PubMed  CAS  Google Scholar 

  9. Hardie DG, Hawley SA. AMP-activated protein kinase: the energy charge hypothesis revisited. BioEssays. 2001;23:1112–9.

    Article  PubMed  CAS  Google Scholar 

  10. Zhao X, Zmijewski JW, Lorne E, Liu G, Park YJ, Tsuruta Y, et al. Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2008;295:L497–504.

    Article  PubMed  CAS  Google Scholar 

  11. Sag D, Carling D, Stout RD, Suttles J. Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol. 2008;181:8633–41.

    PubMed  CAS  Google Scholar 

  12. Kim TB, Kim SY, Moon KA, Park CS, Jang MK, Yun ES, et al. Five-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside attenuates poly (I:C)-induced airway inflammation in a murine model of asthma. Clin Exp Allergy. 2007;37:1709–19.

    Article  PubMed  CAS  Google Scholar 

  13. Alba G, El Bekay R, Alvarez-Maqueda M, Chacón P, Vega A, Monteseirín J, et al. Stimulators of AMP-activated protein kinase inhibit the respiratory burst in human neutrophils. FEBS Lett. 2004;573:219–25.

    Article  PubMed  CAS  Google Scholar 

  14. Park SJ, Lee YC. Antioxidants as novel agents for asthma. Mini Rev Med Chem. 2006;6:235–40.

    Article  PubMed  CAS  Google Scholar 

  15. Barrett N, Austen KF. Airway inflammation in asthma: Th2 cell immunity and beyond. Immunity. 2009;31:425–37.

    Article  PubMed  CAS  Google Scholar 

  16. Martinez FD, Wright AL, Taussig LM, Holberg CJ, Halonen M, Morgan WJ. Asthma and wheezing in the first six years of life. The Group Health Medical Associates. N Engl J Med. 1995;332:133–8.

    Article  PubMed  CAS  Google Scholar 

  17. Saglani S, Payne DN, Zhu J, Wang Z, Nicholson AG, Bush A, et al. Early detection of airway wall remodeling and eosinophilic inflammation in preschool wheezers. Am J Respir Crit Care Med. 2007;176:858–64.

    Article  PubMed  Google Scholar 

  18. Saito S, Nakashima A, Shima T, Ito M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am J Reprod Immunol. 2010;63:601–10.

    Article  PubMed  CAS  Google Scholar 

  19. Toldi G, Molvarec A, Stenczer B, Müller V, Eszes N, Bohács A, et al. Peripheral T(h)1/T(h)2/T(h)17/regulatory T-cell balance in asthmatic pregnancy. I. Int Immunol. 2011;23:669–77.

    Article  PubMed  CAS  Google Scholar 

  20. Palomares O, Yaman G, Azkur AK, Akkoc T, Akdis M, Akdis CA. Role of Treg in immune regulation of allergic diseases. Eur J Immunol. 2010;40:1232–40.

    Article  PubMed  CAS  Google Scholar 

  21. Xue K, Zhou Y, Xiong S, Xiong W, Tang T. Analysis of CD4+ CD25+ regulatory T cells and Foxp3 mRNA in the peripheral blood of patients with asthma. J Huazhong Univ Sci Technolog Med Sci. 2007;27:31–3.

    Article  PubMed  CAS  Google Scholar 

  22. Zhao Y, Yang J, Gao YD, Guo W. Th17 immunity in patients with allergic asthma. Int Arch Allergy Immunol. 2010;151:297–307.

    Article  PubMed  CAS  Google Scholar 

  23. O’Garra A, Barrat FJ, Castro AG, Vicari A, Hawrylowicz C. Strategies for use of IL-10 or its antagonists in human disease. Immunol Rev. 2008;223:114–31.

    Article  PubMed  Google Scholar 

  24. John M, Lim S, Seybold J, Jose P, Robichaud A, O’Connor B, et al. Inhaled corticosteroids increase interleukin-10 but reduce macrophage inflammatory protein-1 alpha, granulocyte-macrophage colony-stimulating factor, and interferon-gamma release from alveolar macrophages in asthma. Am J Respir Crit Care Med. 1998;157:256–62.

    PubMed  CAS  Google Scholar 

  25. Lim S, Crawley E, Woo P, Barnes PJ. Haplotype associated with low interleukin-10 production in patients with severe asthma. Lancet. 1998;352:113.

    Article  PubMed  CAS  Google Scholar 

  26. Akdis M, Verhagen J, Taylor A, Karamloo F, Karagiannidis C, Crameri R, et al. Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J Exp Med. 2004;199:1567–75.

    Article  PubMed  CAS  Google Scholar 

  27. Ribatti D, Puxeddu I, Crivellato E, Nico B, Vacca A, Levi-Schaffer F. Angiogenesis in asthma. Clin Exp Allergy. 2009;39:1815–21.

    Article  PubMed  CAS  Google Scholar 

  28. Lee YC, Kwak YG, Song CH. Contribution of vascular endothelial growth factor to airway hyperresponsiveness and inflammation in a murine model of toluene diisocyanate-induced asthma. J Immunol. 2002;168:3595–600.

    PubMed  CAS  Google Scholar 

  29. Kanazawa H, Nomura S, Yoshikawa J. Role of microvascular permeability on physiologic differences in asthma and eosinophilic bronchitis. Am J Respir Crit Care Med. 2004;169:1125–30.

    Article  PubMed  Google Scholar 

  30. Knox AJ, Corbett L, Stocks J, Holland E, Zhu YM, Pang L. Human airway smooth muscle cells secrete vascular endothelial growth factor: up-regulation by bradykinin via a protein kinase C and prostanoid-dependent mechanism. FASEB J. 2001;15:2480–8.

    Article  PubMed  CAS  Google Scholar 

  31. Wen FQ, Liu X, Manda W, Terasaki Y, Kobayashi T, Abe S, et al. TH2 cytokine-enhanced and TGF beta-enhanced vascular endothelial growth factor production by cultured human airway smooth muscle cells is attenuated by IFN-gamma and corticosteroids. J Allergy Clin Immunol. 2003;111:1307–18.

    Article  PubMed  CAS  Google Scholar 

  32. Kazi AS, Lotfi S, Goncharova EA, Tliba O, Amrani Y, Krymskaya VP, et al. Vascular endothelial growth factor-induced secretion of fibronectin is ERK dependent. Am J Physiol Lung Cell Mol Physiol. 2004;286:L539–45.

    Article  PubMed  CAS  Google Scholar 

  33. Faffe DS, Flynt L, Mellema M, Moore PE, Silverman ES, Subramaniam V, et al. Oncostatin M causes eotaxin-1 release from airway smooth muscle: synergy with IL-4 and IL-13. J Allergy Clin Immunol. 2005;115:514–20.

    Article  PubMed  CAS  Google Scholar 

  34. Lee CG, Link H, Baluk P, Homer RJ, Chapoval S, Bhandari V, et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat Med. 2004;10:1095–103.

    Article  PubMed  CAS  Google Scholar 

  35. Loboda A, Jozkowicz A, Dulak J. HIF-1 and HIF-2 transcription factors—similar but not identical. Mol Cells. 2010;29:435–42.

    Article  PubMed  CAS  Google Scholar 

  36. Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA. 1997;94:4273–8.

    Article  PubMed  CAS  Google Scholar 

  37. Wiesener MS, Jürgensen JS, Rosenberger C, Scholze CK, Hörstrup JH, Warnecke C, et al. Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J. 2003;17:271–3.

    PubMed  CAS  Google Scholar 

  38. Lee SY, Kwon S, Kim KH, Moon HS, Song JS, Park SH, et al. Expression of vascular endothelial growth factor and hypoxia-inducible factor in the airway of asthmatic patients. Ann Allergy Asthma Immunol. 2006;97:794–9.

    Article  PubMed  CAS  Google Scholar 

  39. Tournoy KG, Kips JC, Schou C, Pauwels RA. Airway eosinophilia is not a requirement for allergen-induced airway hyperresponsiveness. Clin Exp Allergy. 2000;30:79–85.

    Article  PubMed  CAS  Google Scholar 

  40. Takeda K, Hamelmann E, Joetham A, Shultz LD, Larsen GL, Irvin CG, et al. Development of eosinophilic airway inflammation and airway hyperresponsiveness in mast cell-deficient mice. J Exp Med. 1997;186:449–54.

    Article  PubMed  CAS  Google Scholar 

  41. Lee KS, Kim SR, Park SJ, Park HS, Min KH, Jin SM, et al. Peroxisome proliferator activated receptor-gamma modulates reactive oxygen species generation and activation of nuclear factor-kappaB and hypoxia-inducible factor 1alpha in allergic airway disease of mice. J Allergy Clin Immunol. 2006;118:120–7.

    Article  PubMed  CAS  Google Scholar 

  42. Hur GY, Kim SH, Park SM, Ye YM, Kim CW, Jang AS, et al. Tissue transglutaminase can be involved in airway inflammation of toluene diisocyanate-induced occupational asthma. J Clin Immunol. 2009;29:786–94.

    Article  PubMed  CAS  Google Scholar 

  43. Robinson DS. Regulatory T cells and asthma. Clin Exp Allergy. 2009;39:1314–23.

    Article  PubMed  CAS  Google Scholar 

  44. Treins C, Murdaca J, Van Obberghen E, Giorgetti-Peraldi S. AMPK activation inhibits the expression of HIF-1alpha induced by insulin and IGF-1. Biochem Biophys Res Commun. 2006;342:1197–202.

    Article  PubMed  CAS  Google Scholar 

  45. Henderson WR Jr, Chi EY, Teo JL, Nguyen C, Kahn M. A small molecule inhibitor of redox-regulated NF-kappa B and activator protein-1 transcription blocks allergic airway inflammation in a mouse asthma model. J Immunol. 2002;169:5294–9.

    PubMed  Google Scholar 

  46. Mahajan SG, Mali RG, Mehta AA. Effect of Moringa oleifera Lam. seed extract on toluene diisocyanate-induced immune-mediated inflammatory responses in rats. J Immunotoxicol. 2007;4:85–96.

    Article  PubMed  Google Scholar 

  47. Kim SH, Park HJ, Lee CM, Choi IW, Moon DO, Roh HJ, et al. Epigallocatechin-3-gallate protects toluene diisocyanate-induced airway inflammation in a murine model of asthma. FEBS Lett. 2006;580:1883–90.

    Article  PubMed  CAS  Google Scholar 

  48. Kim JE, Kim YW, Lee IK, Kim JY, Kang YJ, Park SY. AMP-activated protein kinase activation by 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) inhibits palmitate-induced endothelial cell apoptosis through reactive oxygen species suppression. J Pharmacol Sci. 2008;106:394–403.

    Article  PubMed  CAS  Google Scholar 

  49. Biswas S, Gupta MK, Chattopadhyay D, Mukhopadhyay CK. Insulin-induced activation of hypoxia-inducible factor-1 requires generation of reactive oxygen species by NADPH oxidase. Am J Physiol Heart Circ Physiol. 2007;292:H758–66.

    Article  PubMed  CAS  Google Scholar 

  50. Lee KS, Kim SR, Park HS, Park SJ, Min KH, Lee KY, et al. A novel thiol compound, N-acetylcysteine amide, attenuates allergic airway disease by regulating activation of NF-kappaB and hypoxia-inducible factor-1alpha. Exp Mol Med. 2007;39:756–68.

    PubMed  CAS  Google Scholar 

  51. Irwin DC, McCord JM, Nozik-Grayck E, Beckly G, Foreman B, Sullivan T, et al. A potential role for reactive oxygen species and the HIF-1alpha-VEGF pathway in hypoxia-induced pulmonary vascular leak. Free Radic Biol Med. 2009;47:55–61.

    Article  PubMed  CAS  Google Scholar 

  52. Lloyd CM, Hawrylowicz CM. Regulatory T cells in asthma. Immunity. 2009;31:438–49.

    Article  PubMed  CAS  Google Scholar 

  53. Nath N, Khan M, Paintlia MK, Singh I, Hoda MN, Giri S. Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J Immunol. 2009;182:8005–14.

    Article  PubMed  CAS  Google Scholar 

  54. Kim SR, Lee KS, Park SJ, Min KH, Lee MH, Lee KA, et al. A novel dithiol amide CB3 attenuates allergic airway disease through negative regulation of p38 MAPK. Am J Respir Crit Care Med. 2011;183:1015–24.

    Article  PubMed  CAS  Google Scholar 

  55. Karol MH. Animal models of occupational asthma. Eur Respir J. 1994;7:555–68.

    Article  PubMed  CAS  Google Scholar 

  56. Shin YS, Takeda K, Gelfand EW. Understanding asthma using animal models. Allergy Asthma Immunol Res. 2009;1:10–8.

    Article  PubMed  CAS  Google Scholar 

  57. Persson CG, Erjefalt JS, Korsgren M, Sundler F. The mouse trap. Trends Pharmacol Sci. 1997;18:465–7.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Mie-Jae Im for critical reading of the manuscript. This study was supported by a grant of the Korea Healthcare technology R&D Project, Ministry of Health and Welfare, Republic of Korea (A084144) and by the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-313-E00249).

Conflict of interest

The authors declared that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chul Lee.

Additional information

Responsible Editor: Andras Falus.

S. J. Park and K. S. Lee contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S.J., Lee, K.S., Kim, S.R. et al. AMPK activation reduces vascular permeability and airway inflammation by regulating HIF/VEGFA pathway in a murine model of toluene diisocyanate-induced asthma. Inflamm. Res. 61, 1069–1083 (2012). https://doi.org/10.1007/s00011-012-0499-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-012-0499-6

Keywords

Navigation