Skip to main content
Log in

On the transformation of struvite into newberyite in aqueous systems

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The transformation of struvite MgNH4PO4 · 6H2O into newberyite MgHPO4 · 3H2O is studied in aqueous solutions at 25° C and 37° C by following the evolution of solutions, supersaturated with respect to both phases in the concentration range 0.025–0.50 M. The precipitation of struvite as the first phase is accompanied by a sharp decrease of pH, which subsequently remains constant. During this period, newberyite crystals can nucleate whereas struvite is dissolving. Another decrease of pH, due to the newberyite growth, is observed when almost all struvite has disappeared. Finally pH tends asymptotically to a constant value, corresponding to a stable equilibrium. The whole process may take several months. At neither stage were epitaxial relationships observed between struvite and newberyite. The shape of the newberyite crystals is an indicator of their origin in mineralogical and biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbona F, Boistelle R (1979) Growth morphology and crystal habit of struvite crystals (MgNH4PO4 · 6H2O). J Crystal Growth 46:339–354

    Google Scholar 

  • Abbona F, Boistelle R, Lundager Madsen HE (1982) Crystallization of two magnesium phosphates, struvite and newberyite: Effect of pH and concentration. J Crystal Growth 57:6–14

    Google Scholar 

  • Boistelle R, Abbona F (1981) Morphology, habit and growth of newberyite crystals (MgHPO4 · 3H2O). J Crystal Growth 54:275–295

    Google Scholar 

  • Bridge PJ (1971) Analyses of altered struvite from Skipton, Victoria. Mineral Mag 38:381–382

    Google Scholar 

  • Cohen LH, Ribbe PH (1966) Magnesium phosphate mineral replacement at Mono Lake, California. Am Mineral 51:1755–1765

    Google Scholar 

  • Frazier AW, Lehr JR, Smith JP (1963) The magnesium phosphates hannayite, schertelite and bobierrite. Am Mineral 48:635–641

    Google Scholar 

  • Gragg R (1928) Newberyite and other phosphates from Ascension Island. Am Mineral 13:397–401

    Google Scholar 

  • MacIvor RWE (1970) Über die Mineralien des australischen Fledermausguanos. Z Kristallogr 42:386–387 (Auszüge)

    Google Scholar 

  • Lacroix A (1912) Sur les minéraux du guano de la Réunion. Bull Soc Franç Minéral 35:114–119

    Google Scholar 

  • Ribbe PH (1969) The decomposition of struvite: further evidence. Mineral Mag 37:290

    Google Scholar 

  • Schmidt A (1883) Newberyite von Mejillones, Chile. Z Kristallogr 7:26–35

    Google Scholar 

  • Schulten A de (1903) Recherches sur la struvite et la struvite arséniée artificielles. Production simultanée de la struvite et de la newberyite, de la struvite arséniée et de la roesslérite. Bull Soc Franç Minéral 26:95–98

    Google Scholar 

  • Sücker I (1963) Magnesiumhydrogenphosphat als Bestandtheil von Harnkonkrementen. Naturwissenschaften 50:499–500

    Google Scholar 

  • Taylor AW, Frazier AW, Gurney EL (1963) Solubility products of magnesium ammonium and magnesium potassium phosphates. Trans Faraday Soc 59:1580–1584

    Google Scholar 

  • Whitaker A (1968) The decomposition of struvite. Mineral Mag 36:820–824

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boistelle, R., Abbona, F. & Lundager Madsen, H.E. On the transformation of struvite into newberyite in aqueous systems. Phys Chem Minerals 9, 216–222 (1983). https://doi.org/10.1007/BF00311958

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00311958

Keywords

Navigation