Skip to main content
Log in

Application of transilient turbulent theory to study interactions between the atmospheric boundary layer and forest canopies

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The new Forest-Land-Atmosphere ModEl called FLAME is presented. The first-order, nonlocal turbulence closure called transilient turbulence theory (Stull, 1993) is applied to study the interactions between a forested land-surface and the atmospheric boundary layer (ABL). The transilient scheme is used for unequal vertical grid spacing and includes the effects of drag, wake turbulence, and interference to vertical mixing by plant elements. Radiation transfer within the vegetation and the equations for the energy balance at the leaf surface have been taken from Norman (1979). Among others, the model predicts profiles of air temperature, humidity and wind velocity within the ABL, sensible and latent heat fluxes from the soil and the vegetation, the stomata and aerodynamic resistances, as well as profiles of temperature and water content in the soil. Preliminary studies carried out for a cloud free day and idealized initial conditions are presented. The canopy height is 30 m within a vertical domain of 3 km. The model is able to capture some of the effects usually observed within and above forested areas, including the relative wind speed maximum in the trunk space and the counter gradient-fluxes in the lower part of the plant stand. Of special interest is the determination of the location and magnitude of the turbulent mixing between model layers, which permits one to identify the effects of large eddies transporting momentum and scalar quantities into the canopy. A comparison between model simulations and field measurements will be presented in a future paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amiro, B. D.: 1990, ‘Comparison of Turbulence Statistics Within Three Boreal Forest Canopies’, Boundary-Layer Meteorol. 51, 99–121.

    Google Scholar 

  • Baldocchi, D.: 1988, ‘A Multi-Layer Model for Estimating Sulphur Dioxide Deposition to a Deciduous Oak Forest Canopy’, Atmos. Environ. 21, 91–101.

    Google Scholar 

  • Baldocchi, D. D. and Hutchison, B. A.: 1987, ‘Turbulence in an Almond Orchard: Vertical Variations in Turbulent Statistics’, Boundary-Layer Meteorol. 40, 127–146.

    Google Scholar 

  • Baumgartner, A.: 1956, ‘Untersuchungen über den Wärme- und Wasserhaushalt eines jungen Waldes’, Ber. Dtsch. Wetterdienst Offenbach 28 (5).

  • Brunt, D.: 1932, ‘Notes on Radiation in the Atmosphere: I’, Quart. J. Roy. Meteorol. Soc. 58, 389–420.

    Google Scholar 

  • Cohen, Y., Kelliher, F. M., and Black, T. A.: 1985, ‘Determination of Sap Flow in Douglas-Fir Trees using the Heat Pulse Technique’, Can. J. For. Res. 15, 422–428.

    Google Scholar 

  • Deardorff, J. W.: 1978, ‘Efficient Prediction of Ground Surface Temperature and Moisture, with Inclusion of a Layer of Vegetation’, J. Geophys. Res. 83(4), 1889–1903.

    Google Scholar 

  • Denmead, O. T. and Bradley, E. F.: 1985, ‘Flux-Gradient Relationships in a Forest Canopy’, in: B. A. Hutchinson and B. B. Hicks (Eds.), The Forest-Atmosphere Interaction, D. Reidel Publ. Co., Dordrecht, pp. 421–442.

    Google Scholar 

  • Dlugi, R., Roider, R. G. and Reu-swig, K.: 1993, Entstehung, Verhalten und Ablagerung von gas-, partikel- und tropfenförmigen Reaktionsprodukten (Teil II), PBWU-Bericht, Universität München.

  • Ebert, E. E., Schumann, U., and Stull, R. B.: 1989, ‘Nonlocal Turbulent Mixing in the Convective Boundary Layer Evaluated from Large-Eddy Simulation’, J. Atmos. Sci. 46, 2178–2207.

    Google Scholar 

  • Forkel, R., Panhans, W. G., Welch, R. and Zdunkowski, W.: 1984, ‘A One-Dimensional Numerical Study to Simulate the Influence of Soil Moisture, Pollution and Vertical Exchange on the Evolution of Radiation Fog’, Contr. Atmos. Phys. 57, 72–91.

    Google Scholar 

  • Gross, G.: 1993, in I. Douglas and M. Marcus (eds.), Numerical Simulation of Canopy Flows, Springer-Verlag, Berlin, 167 pp.

    Google Scholar 

  • Halldin, S.: 1985, ‘Leaf and Break Area Distribution in a Pine Forest’, in B. A. Hutchison and B. Hicks (eds.), The Forest-Atmosphere Interactions, D. Reidel Publishing Company, pp. 39–58.

  • Högström, U., Bergström, H., Smedman, A.-S., Halldin, S., and Lindroth, A.: 1989, ‘Turbulent Exchanges Above a Pine Forest, I: Fluxes and Gradients’, Boundary-Layer Meteorol. 49, 197–217.

    Google Scholar 

  • Hosker Jr., R. P., Nappo Jr., C. J., and Hanna, S. R.: 1974, ‘Diurnal Variation of Vertical Thermal Structure in a Pine Plantation’, Agric. Meteorol. 13, 259–265.

    Google Scholar 

  • Jarvis, P. G.: 1976, ‘The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field’, Phil. Trans. Roy. Soc. Lond., B. 273, 593–610.

    Google Scholar 

  • Jarvis, P. G., James, G. B., and Landsberg, J. J.: 1976: ‘Coniferous Forests’, in J. L. Monteith (ed.), Vegetation and the Atmosphere, Vol. II, Academic Press, London, pp. 435.

    Google Scholar 

  • Lee, X. and Black, T. A.: 1993, ‘Atmospheric Turbulence within and Above a Douglas-Fir Stand. Part II: Eddy Fluxes of Sensible Heat and Water Vapour’, Boundary-Layer Meteorol. 64, 369–389.

    Google Scholar 

  • Legg, B. J. and Monteith, J. L.: 1975, Heat and Mass Transfer in Plant Canopies, in Heat and mass transfer in the biosphere, New York, Wiley and Sons, pp. 167–186.

    Google Scholar 

  • Lu, C.-H. and Fitzjarrald, D. R.: 1994, ‘Seasonal and Diurnal Variation of Coherent Structures over a Decidious Forest’, Boundary-Layer Meteorol. 69, 43–69.

    Google Scholar 

  • Meyers, T. P. and Paw U, K. T.: 1987, ‘Modeling the Plant Canopy Micrometeorology with Higher-Order Closure Principles’, Agric. Forest Meteorol. 41, 143–163.

    Google Scholar 

  • McCaughey, J. H.: 1985, ‘Energy Balance Storage Terms in a Mature Mixed Forest at Petawawa, Ontario — A Case Study’, Boundary-Layer Meteorol. 31, 89–101.

    Google Scholar 

  • Monteith, J. L.: 1973, in J. L. Monteith (ed.), Principles of Environmental Physics, New York, American Elsevier Publ. Co., 241 pp.

    Google Scholar 

  • Norman, J. M.: 1975, ‘Radiative Transfer in Vegetation’, in D. A. de Vries and N. H. Afgan (Eds.), Heat and Mass Transfer in the Biosphere, Washington, Scripta Book Company, pp. 187–206.

    Google Scholar 

  • Norman, J. M.: 1979, ‘Modeling the Complete Crop Canopy’, in B. J. Barfield and J. F. Gerber (Eds.), Modification of the Aerial Environment of Plants St. Joseph, Michigan, American Society of Agricultural Engineers, ASAE Monographs.

    Google Scholar 

  • Norman, J. M.: 1982, ‘Simulation of Microclimates’, In J. L. Hatfield and I. J. Thomason (Eds.), Biometeorology and Integrated Pest Management, New York, Academic Press, pp. 65–97.

    Google Scholar 

  • Norman, J. M. and Campbell, G.: 1983, ‘Application of a Plant-Environment Model to Problems in Irrigation’, in D. Hillel (Ed.), Adv. in Irrigation, Vol. 2, Academic Press Inc., ISBN 0-12-024302-4, 155–188.

  • Patton, E. G., Shaw, R. H., Paw U. K. T., and Moeng, C.-H.: 1994, ‘A Comparison of Two Large-Eddy Simulations of Turbulent Flow Above and Within a Forest Canopy’, Proc. 21st Conference on Agricultural and Forest Meteorology; San Diego, USA, 7–11 March 1994, published by AMS, pp. 88–89.

  • Raupach, M. R., Coppin, P. A., and Legg, B. J.: 1986, ‘Experiments on Scalar Dispersion Within a Model Plant Canopy. Part I: The Turbulence Structure’, Boundary-Layer Meteorol. 35, 21–52.

    Google Scholar 

  • Raupach, M. R. and Legg, B. J.: 1984, ‘The Uses and Limitations of Flux-Gradient Relationships in Micrometeorology’, Agric. Water Manag. 8, 119–131.

    Google Scholar 

  • Raupach, M. R. and Shaw, R. H.: 1982, ‘Averaging Procedures for Flow within Vegetation Canopies’, Boundary-Layer Meteorol. 22, 79–90.

    Google Scholar 

  • Raymond, W. H. and Stull, R. B.: 1990, ‘Application of Transilient Turbulence Theory to Mesoscale Numerical Weather Forecasting’, Mon. Wea. Rev. 118, 2471–2499.

    Google Scholar 

  • Shaw, R. H. and Schumann, U.: 1992, ‘Large-Eddy Simulation of Turbulent Flow Above and Within a Forest’, Boundary-Layer Meteorol. 61, 47–64.

    Google Scholar 

  • Sievers, U., Forkel, R. and Zdunkowski, W.: 1983, ‘Transport Equations for Heat and Moisture in the Soil and their Application to Boundary Layer Problems’, Contr. Atmos. Phys. 56, 58–83.

    Google Scholar 

  • Stull, R. B.: 1984, ‘Transilient Turbulence Theory. Part I: The Concept of Eddy Mixing Across Finite Distances’, J. Atmos. Sci. 41, 3351–3367.

    Google Scholar 

  • Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology, Dordrecht, Kluwer Academic Publishers, 665 pp.

    Google Scholar 

  • Stull, R. B. and Driedonks, A. G. M.: 1987, ‘Applications of the Transilient Turbulence Parameterization to Atmospheric Boundary-Layer Simulations’, Boundary-Layer Meteorol. 40, 209–239.

    Google Scholar 

  • Stull, R. B.: 1990, Nonlocal Turbulent Mixing: Measurement and Parameterization of Transilient Matrices, Preprints Ninth Conference of Turbulence and Diffusion, April 30–May 3, 1990, Roskilde, Denmark. American Meteor. Soc., pp. 348–351.

    Google Scholar 

  • Stull, R. B.: 1991, ‘A Comparison of Parameterized vs. Measured Transilient Mixing Coefficients for a Convective Mixing Layer’, Boundary-Layer Meteorol. 55, 67–90.

    Google Scholar 

  • Stull, R. B.: 1993, ‘Review of Nonlocal Mixing in Turbulent Atmospheres: Transilient Turbulence Theory’, Boundary-Layer Meteorol. 62, 21–96.

    Google Scholar 

  • Verma, S. B., Baldocchi, D. D., Anderson, D. E., Matt, D. R., and Clement, R. J.: 1986, ‘Eddy Fluxes of CO2, Water Vapor and Sensible Heat Over a Decidious Forest’, Boundary-Layer Meteorol. 36, 71–91.

    Google Scholar 

  • Wilson, N. R. and Shaw, R. H.: 1977, ‘A Higher Order Closure Model for Canopy Flow’, J. Appl. Meteorol. 16, 1197–1205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inclán, M.G., Forkel, R., Dlugi, R. et al. Application of transilient turbulent theory to study interactions between the atmospheric boundary layer and forest canopies. Boundary-Layer Meteorol 79, 315–344 (1996). https://doi.org/10.1007/BF00119403

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00119403

Keywords

Navigation