Skip to main content
Log in

Many faces of low mass neutralino dark matter in the unconstrained MSSM, LHC data and new signals

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

If all strongly interacting sparticles (the squarks and the gluinos) in an un- constrained minimal supersymmetric standard model (MSSM) are heavier than the corre- sponding mass lower limits in the minimal supergravity (mSUGRA) model, obtained by the current LHC experiments, then the existing data allow a variety of electroweak (EW) sectors with light sparticles yielding dark matter (DM) relic density allowed by the WMAP data. Some of the sparticles may lie just above the existing lower bounds from LEP and lead to many novel DM producing mechanisms not common in mSUGRA. This is illustrated by revisiting the above squark-gluino mass limits obtained by the ATLAS Collaboration, with an unconstrained EW sector with masses not correlated with the strong sector. Using their selection criteria and the corresponding cross section limits, we find at the generator level using Pythia, that the changes in the mass limits, if any, are by at most 10-12 % in most scenarios. In some cases, however, the relaxation of the gluino mass limits are larger (≈ 20 %). If a subset of the strongly interacting sparticles in an unconstrained MSSM are within the reach of the LHC, then signals sensitive to the EW sector may be obtained. This is illustrated by simulating the blj T , l = e and μ, and bτ j T signals in i) the light stop scenario and ii) the light stop-gluino scenario with various light EW sectors allowedby the WMAP data. Some of the more general models may be realized with non-universal scalar and gaugino masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept. 110 (1984) 1 [INSPIRE].

    ADS  Google Scholar 

  2. H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept. 117 (1985) 75 [INSPIRE].

    ADS  Google Scholar 

  3. J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1991).

  4. M. Drees, P. Roy and R.M. Godbole, Theory and phenomenology of sparticles, World Scientific, Singapore (2005).

    Google Scholar 

  5. ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7\;TeV \) proton-proton collisions, Phys. Lett. B 710 (2012) 67 [arXiv:1109.6572] [INSPIRE].

    ADS  Google Scholar 

  6. ATLAS collaboration, Search for supersymmetry in pp 1 collisions at \( \sqrt {s} = 7\;TeV \) in final states with missing transverse momentum, b-jets and one lepton with the ATLAS detector, ATLAS-CONF-2011-130 (2011).

  7. ATLAS collaboration, G. Aad et al., Search for supersymmetry in final states with jets, missing transverse momentum and one isolated lepton in \( \sqrt {s} = 7\;TeV \) pp collisions using 1 fb − 1 of ATLAS data, Phys. Rev. D 85 (2012) 012006 [arXiv:1109.6606] [INSPIRE].

    ADS  Google Scholar 

  8. ATLAS collaboration, G. Aad et al., Searches for supersymmetry with the ATLAS detector using final states with two leptons and missing transverse momentum in \( \sqrt {s} = 7\;TeV \) proton-proton collisions, Phys. Lett. B 709 (2012) 137 [arXiv:1110.6189] [INSPIRE].

    ADS  Google Scholar 

  9. CMS collaboration, S. Chatrchyan et al., Search for supersymmetry at the LHC in events with jets and missing transverse energy, Phys. Rev. Lett. 107 (2011) 221804 [arXiv:1109.2352] [INSPIRE].

    ADS  Google Scholar 

  10. CMS collaboration, Search for new physics with same-sign isolated dilepton events with jets and missing energy, PAS-SUS-11-010.

  11. CMS collaboration, Search for new physics with same-sign isolated dilepton events with jets and missing energy, PAS-SUS-11-010.

  12. CMS collaboration, Search for new physics with single-leptons at the LHC, PAS-SUS-11-015.

  13. D. Feldman, Z. Liu and P. Nath, Connecting the direct detection of dark matter with observation of sparticles at the LHC, Phys. Rev. D 81 (2010) 095009 [arXiv:0912.4217] [INSPIRE].

    ADS  Google Scholar 

  14. H. Baer, S. Kraml, A. Lessa and S. Sekmen, Testing Yukawa-unified SUSY during year 1 of LHC: the role of multiple b-jets, dileptons and missing ET , JHEP 02 (2010) 055 [arXiv:0911.4739] [INSPIRE].

    ADS  Google Scholar 

  15. H.K. Dreiner, M. Krämer, J.M. Lindert and B. O’Leary, SUSY parameter determination at the LHC using cross sections and kinematic edges, JHEP 04 (2010) 109 [arXiv:1003.2648] [INSPIRE].

    ADS  Google Scholar 

  16. H. Baer, V. Barger, A. Lessa and X. Tata, Capability of LHC to discover supersymmetry with \( \sqrt {s} = 7\;TeV \) and 1 fb −1, JHEP 06 (2010) 102 [arXiv:1004.3594] [INSPIRE].

    ADS  Google Scholar 

  17. N. Bhattacharyya, A. Datta and S. Poddar, SUSY darkmatter at the LHC - 7 TeV, Phys. Rev. D 82 (2010) 035003 [arXiv:1005.2673] [INSPIRE].

    ADS  Google Scholar 

  18. B. Altunkaynak, M. Holmes, P. Nath, B.D. Nelson and G. Peim, SUSY discovery potential and benchmarks for early runs at \( \sqrt {s} = 7\;TeV \) at the LHC, Phys. Rev. D 82 (2010) 115001 [arXiv:1008.3423] [INSPIRE].

    ADS  Google Scholar 

  19. B. Mukhopadhyaya and S. Mukhopadhyay, Same-sign trileptons and four-leptons as signatures of new physics at the CERN large hadron collider, Phys. Rev. D 82 (2010) 031501 [arXiv:1005.3051] [INSPIRE].

    ADS  Google Scholar 

  20. S. Akula, N. Chen, D. Feldman, M. Liu, Z. Liu, et al., Interpreting the first CMS and ATLAS SUSY results, Phys. Lett. B 699 (2011) 377 [arXiv:1103.1197] [INSPIRE].

    ADS  Google Scholar 

  21. N. Chen, D. Feldman, Z. Liu, P. Nath and G. Peim, Low mass gluino within the sparticle landscape, implications for dark matter and early discovery prospects at LHC-7, Phys. Rev. D 83 (2011) 035005 [arXiv:1011.1246] [INSPIRE].

    ADS  Google Scholar 

  22. P. Bechtle, K. Desch, H. Dreiner, M. Kr¨amer, B. O’Leary, et al., Present and possible future implications for mSUGRA of the non-discovery of SUSY at the LHC, arXiv:1105.5398 [INSPIRE].

  23. M. Guchait and D. Sengupta, Event-shape selection cuts for supersymmetry searches at the LHC with 7 TeV energy, Phys. Rev. D 84 (2011) 055010 [arXiv:1102.4785] [INSPIRE].

    ADS  Google Scholar 

  24. O. Buchmueller, R. Cavanaugh, A. De Roeck, M. Dolan, J. Ellis, et al., Supersymmetry in light of 1/fb of LHC data, Eur. Phys. J. C 72 (2012) 1878 [arXiv:1110.3568] [INSPIRE].

    ADS  Google Scholar 

  25. M. Badziak and K. Sakurai, LHC constraints on Yukawa unification in SO(10), JHEP 02 (2012) 125 [arXiv:1112.4796] [INSPIRE].

    ADS  Google Scholar 

  26. A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally supersymmetric grand unification, Phys. Rev. Lett. 49 (1982) 970 [INSPIRE].

    ADS  Google Scholar 

  27. R. Barbieri, S. Ferrara and C.A. Savoy, Gauge models with spontaneously broken local supersymmetry, Phys. Lett. B 119 (1982) 343 [INSPIRE].

    ADS  Google Scholar 

  28. L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the messenger of supersymmetry breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE].

    ADS  Google Scholar 

  29. P. Nath, R.L. Arnowitt and A.H. Chamseddine, Gauge hierarchy in supergravity GUTs, Nucl. Phys. B 227 (1983) 121 [INSPIRE].

    ADS  Google Scholar 

  30. N. Ohta, Grand unified theories based on local supersymmetry, Prog. Theor. Phys. 70 (1983) 542 [INSPIRE].

    ADS  Google Scholar 

  31. LEP SUSY working group, ALEPH, DELPHI, L3, OPAL Experiments, http://lepsusy.web.cern.ch/lepsusy/.

  32. W.L. Freedman and M.S. Turner, Measuring and understanding the universe, Rev. Mod. Phys. 75 (2003) 1433 [astro-ph/0308418] [INSPIRE].

    ADS  Google Scholar 

  33. L. Roszkowski, Particle dark matter — A theorist’s perspective, Pramana 62 (2004) 389.

    ADS  Google Scholar 

  34. G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].

    ADS  Google Scholar 

  35. H. Baer and X. Tata, Dark matter and the LHC, in Physics at the Large Hadron Collider, Indian National Science Academy, A. Datta, B. Mukhopadhyaya and A. Raychaudhuri eds, Springer, New York U.S.A. (2009).

  36. WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].

    ADS  Google Scholar 

  37. N. Baro, F. Boudjema and A. Semenov, Full one-loop corrections to the relic density in the MSSM: a few examples, Phys. Lett. B 660 (2008) 550 [arXiv:0710.1821] [INSPIRE].

    ADS  Google Scholar 

  38. S. Akula, D. Feldman, Z. Liu, P. Nath and G. Peim, New constraints on dark matter from CMS and ATLAS data, Mod. Phys. Lett. A 26 (2011) 1521 [arXiv:1103.5061] [INSPIRE].

    ADS  Google Scholar 

  39. N. Bhattacharyya, A. Choudhury and A. Datta, Low mass neutralino dark matter in mSUGRA and more general models in the light of LHC data, Phys. Rev. D 84 (2011) 095006 [arXiv:1107.1997] [INSPIRE].

    ADS  Google Scholar 

  40. C. Boehm, A. Djouadi and M. Drees, Light scalar top quarks and supersymmetric dark matter, Phys. Rev. D 62 (2000) 035012 [hep-ph/9911496] [INSPIRE].

    ADS  Google Scholar 

  41. J.R. Ellis, K.A. Olive and Y. Santoso, Calculations of neutralino stop coannihilation in the CMSSM, Astropart. Phys. 18 (2003) 395 [hep-ph/0112113] [INSPIRE].

    ADS  Google Scholar 

  42. H. Baer, K. Hagiwara and X. Tata, Gauginos as a signal for supersymmetry at \( p\overline p \) colliders, Phys. Rev. D 35 (1987) 1598 [INSPIRE].

    ADS  Google Scholar 

  43. P. Nath and R.L. Arnowitt, Supersymmetric signals at the Tevatron, Mod. Phys. Lett. A 2 (1987) 331 [INSPIRE].

    ADS  Google Scholar 

  44. H. Baer and X. Tata, Probing charginos and neutralinos beyond the reach of LEP at the Tevatron collider, Phys. Rev. D 47 (1993) 2739 [INSPIRE].

    ADS  Google Scholar 

  45. H. Baer, C. Kao and X. Tata, Aspects of chargino - Neutralino production at the Tevatron collider, Phys. Rev. D 48 (1993) 5175 [hep-ph/9307347] [INSPIRE].

    ADS  Google Scholar 

  46. S. Mrenna, G.L. Kane, G.D. Kribs and J.D. Wells, Possible signals of constrained minimal supersymmetry at a high luminosity Fermilab Tevatron collider, Phys. Rev. D 53 (1996) 1168 [hep-ph/9505245] [INSPIRE].

    ADS  Google Scholar 

  47. Z. Sullivan and E.L. Berger, Trilepton production at the CERN LHC: standard model sources and beyond, Phys. Rev. D 78 (2008) 034030 [arXiv:0805.3720] [INSPIRE].

    ADS  Google Scholar 

  48. G. Bozzi, B. Fuks and M. Klasen, Transverse-momentum resummation for slepton-pair production at the CERN LHC, Phys. Rev. D 74 (2006) 015001 [hep-ph/0603074] [INSPIRE].

    ADS  Google Scholar 

  49. G. Bozzi, B. Fuks and M. Klasen, Threshold resummation for slepton-pair production at hadron colliders, Nucl. Phys. B 777 (2007) 157 [hep-ph/0701202] [INSPIRE].

    ADS  Google Scholar 

  50. G. Bozzi, B. Fuks and M. Klasen, Joint resummation for slepton pair production at hadron colliders, Nucl. Phys. B 794 (2008) 46 [arXiv:0709.3057] [INSPIRE].

    ADS  Google Scholar 

  51. F. Borzumati and K. Hagiwara, Testing supersymmetry at the LHC through gluon-fusion production of a slepton pair, JHEP 03 (2011) 103 [arXiv:0912.0454] [INSPIRE].

    ADS  Google Scholar 

  52. CMS collaboration, G. Bayatian et al., CMS technical design report, volume II: Physics performance, J. Phys. G 34 (2007) 995 [INSPIRE].

    ADS  Google Scholar 

  53. N. Bhattacharyya and A. Datta, Tracking down the elusive charginos / neutralinos through τ leptons at the large hadron collider, Phys. Rev. D 80 (2009) 055016 [arXiv:0906.1460] [INSPIRE].

    ADS  Google Scholar 

  54. N. Bhattacharyya, A. Choudhury and A. Datta, SUSY signals with small and large trilinear couplings at the LHC 7 TeV runs and neutralino dark matter, Phys. Rev. D 83 (2011) 115025 [arXiv:1104.0333] [INSPIRE].

    ADS  Google Scholar 

  55. N. Bhattacharyya, A. Datta and M. Maity, Search for top squarks at Tevatron inspired by dark matter and electroweak baryogenesis, Phys. Lett. B 669 (2008) 311 [arXiv:0807.0994] [INSPIRE].

    ADS  Google Scholar 

  56. C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the third generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].

    ADS  Google Scholar 

  57. N. Desai and B. Mukhopadhyaya, Constraints on supersymmetry with light third family from LHC data, JHEP 05 (2012) 057 [arXiv:1111.2830] [INSPIRE].

    ADS  Google Scholar 

  58. K. Huitu, L. Leinonen and J. Laamanen, Stop as a next-to-lightest supersymmetric particle in constrained MSSM, Phys. Rev. D 84 (2011) 075021 [arXiv:1107.2128] [INSPIRE].

    ADS  Google Scholar 

  59. X.-J. Bi, Q.-S. Yan and P.-F. Yin, Probing light stop pairs at the LHC, Phys. Rev. D 85 (2012) 035005 [arXiv:1111.2250] [INSPIRE].

    ADS  Google Scholar 

  60. S. Bornhauser, M. Drees, S. Grab and J. Kim, Light stop searches at the LHC in events with two b-jets and missing energy, Phys. Rev. D 83 (2011) 035008 [arXiv:1011.5508] [INSPIRE].

    ADS  Google Scholar 

  61. M. Drees, M. Hanussek and J.S. Kim, Light stop searches at the LHC with monojet events, arXiv:1201.5714 [INSPIRE].

  62. B. He, T. Li and Q. Shafi, Impact of LHC searches on light top squark, arXiv:1112.4461 [INSPIRE].

  63. C. Boehm, A. Djouadi and Y. Mambrini, Decays of the lightest top squark, Phys. Rev. D 61 (2000) 095006 [hep-ph/9907428] [INSPIRE].

    ADS  Google Scholar 

  64. S.P. Das, A. Datta and M. Guchait, Four-body decay of the stop squark at the upgraded Tevatron, Phys. Rev. D 65 (2002) 095006 [hep-ph/0112182] [INSPIRE].

    ADS  Google Scholar 

  65. S.P. Das, A. Datta and M. Maity, Top squark mass: current limits revisited and new limits from Tevatron run I, Phys. Lett. B 596 (2004) 293 [hep-ph/0404049] [INSPIRE].

    ADS  Google Scholar 

  66. R. Arnowitt, A.H. Chamseddine and P. Nath, Problems in unification and supergravity, La Jolla Institute (1983) [http://www.osti.gov/bridge/servlets/purl/5986323-fY7neR/5986323.pdf].

  67. J.R. Ellis, K. Enqvist, D.V. Nanopoulos and K. Tamvakis, Gaugino masses and grand unification, Phys. Lett. B 155 (1985) 381 [INSPIRE].

    ADS  Google Scholar 

  68. M. Drees, Phenomenological consequences of N = 1 supergravity theories with nonminimal kinetic energy terms for vector superfields, Phys. Lett. B 158 (1985) 409 [INSPIRE].

    ADS  Google Scholar 

  69. A. Corsetti and P. Nath, Gaugino mass nonuniversality and dark matter in SUGRA, strings and D-brane models, Phys. Rev. D 64 (2001) 125010 [hep-ph/0003186] [INSPIRE].

    ADS  Google Scholar 

  70. S.P. Martin, Non-universal gaugino masses from non-singlet F-terms in non-minimal unified models, Phys. Rev. D 79 (2009) 095019 [arXiv:0903.3568] [INSPIRE].

    ADS  Google Scholar 

  71. P. Moxhay and K. Yamamoto, Effects of grand unification interactions on weak symmetry breaking in supergravity theories, Nucl. Phys. B 256 (1985) 130 [INSPIRE].

    ADS  Google Scholar 

  72. B.a. Gato, Can the SU(5) running be neglected in the minimal N = 1 SUGRA model?, Nucl. Phys. B 278 (1986) 189 [INSPIRE].

    ADS  Google Scholar 

  73. N. Polonsky and A. Pomarol, Nonuniversal GUT corrections to the soft terms and their implications in supergravity models, Phys. Rev. D 51 (1995) 6532 [hep-ph/9410231] [INSPIRE].

    ADS  Google Scholar 

  74. J.R. Ellis, D.V. Nanopoulos and K.A. Olive, Lower limits on soft supersymmetry breaking scalar masses, Phys. Lett. B 525 (2002) 308 [hep-ph/0109288] [INSPIRE].

    ADS  Google Scholar 

  75. M. Drees, Intermediate scale symmetry breaking and the spectrum of super partners in superstring inspired supergravity models, Phys. Lett. B 181 (1986) 279 [INSPIRE].

    ADS  Google Scholar 

  76. Y. Kawamura, H. Murayama and M. Yamaguchi, Low-energy effective Lagrangian in unified theories with nonuniversal supersymmetry breaking terms, Phys. Rev. D 51 (1995) 1337 [hep-ph/9406245] [INSPIRE].

    ADS  Google Scholar 

  77. A. Datta, M. Guchait and N. Parua, Squark gluino mass limits revisited for nonuniversal scalar masses, Phys. Lett. B 395 (1997) 54 [hep-ph/9609413] [INSPIRE].

    ADS  Google Scholar 

  78. A. Datta, A. Datta and M. Parida, Signatures of nonuniversal soft breaking sfermion masses at hadron colliders, Phys. Lett. B 431 (1998) 347 [hep-ph/9801242] [INSPIRE].

    ADS  Google Scholar 

  79. A. Datta, A. Datta, M. Drees and D. Roy, Effects of SO(10) D terms on SUSY signals at the Tevatron, Phys. Rev. D 61 (2000) 055003 [hep-ph/9907444] [INSPIRE].

    ADS  Google Scholar 

  80. S. Heinemeyer, W. Hollik and G. Weiglein, Electroweak precision observables in the minimal supersymmetric standard model, Phys. Rept. 425 (2006) 265 [hep-ph/0412214] [INSPIRE].

    ADS  Google Scholar 

  81. S. Heinemeyer, MSSM Higgs physics at higher orders, Int. J. Mod. Phys. A 21 (2006) 2659 [hep-ph/0407244] [INSPIRE].

    ADS  Google Scholar 

  82. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].

    ADS  Google Scholar 

  83. S. Heinemeyer, W. Hollik and G. Weiglein, The masses of the neutral CP-even Higgs bosons in the MSSM: accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].

    ADS  Google Scholar 

  84. LEP Working Group for Higgs boson searches, ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].

    ADS  Google Scholar 

  85. G. Bélanger, F. Boudjema, P. Brun, A. Pukhov, S. Rosier-Lees, et al., Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].

    ADS  MATH  Google Scholar 

  86. A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].

    ADS  MATH  Google Scholar 

  87. M. Muhlleitner, A. Djouadi and Y. Mambrini, Sdecay: a Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [INSPIRE].

    ADS  Google Scholar 

  88. XENON100 collaboration, E. Aprile et al., Dark Matter Results from 100 Live Days of XENON100 Data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].

    ADS  Google Scholar 

  89. XENON100 collaboration, E. Aprile et al., Implications on inelastic dark matter from 100 live days of XENON100 data, Phys. Rev. D 84 (2011) 061101 [arXiv:1104.3121] [INSPIRE].

    ADS  Google Scholar 

  90. XENON100 collaboration, E. Aprile et al., The XENON100 dark matter experiment, Astropart. Phys. 35 (2012) 573 [arXiv:1107.2155] [INSPIRE].

    ADS  Google Scholar 

  91. C. Beskidt, W. de Boer, D. Kazakov and F. Ratnikov, Where is SUSY?, JHEP 05 (2012) 094 [arXiv:1202.3366] [INSPIRE].

    ADS  Google Scholar 

  92. ATLAS collaboration, G. Aad et al., Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt {s} = 7\;TeV \) with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  93. ATLAS collaboration, G. Aad et al., Search for the standard model Higgs boson in the diphoton decay channel with 4.9 fb −1 of pp collisions at \( \sqrt {s} = 7\;TeV \) with ATLAS, Phys. Rev. Lett. 108 (2012) 111803 [arXiv:1202.1414] [INSPIRE].

    ADS  Google Scholar 

  94. ATLAS collaboration, G. Aad et al., Search for the standard model Higgs boson in the decay −1 channel H → Z Z → 4l with 4.8 fb of pp collision data at \( \sqrt {s} = 7\;TeV \) with ATLAS, Phys. Lett. B 710 (2012) 383 [arXiv:1202.1415] [INSPIRE].

    ADS  Google Scholar 

  95. CMS collaboration, S. Chatrchyan et al., Search for a Higgs boson in the decay channel H to Z Z * to \( q\overline q {l^{ - }}{l^{ + }} \) in pp collisions at \( \sqrt {s} = 7\;TeV \) , JHEP 04 (2012) 036 [arXiv:1202.1416] [INSPIRE].

    ADS  Google Scholar 

  96. S. Chatrchyan et al., Search for the standard model Higgs boson decaying into two photons in pp collisions at \( \sqrt {s} = 7\;TeV \) , Phys. Lett. B 710 (2012) 403 [arXiv:1202.1487] [INSPIRE].

    ADS  Google Scholar 

  97. CMS collaboration, Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt {s} = 7\;TeV \), arXiv:1202.1488.

  98. S. Chatrchyan et al., Search for the standard model Higgs boson decaying to a W pair in the fully leptonic final state in pp collisions at \( \sqrt {s} = 7\;TeV \), Phys. Lett. B 710 (2012) 91 [arXiv:1202.1489] [INSPIRE].

    ADS  Google Scholar 

  99. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson in the decay channel H to Z Z to 4 leptons in pp collisions at \( \sqrt {s} = 7\;TeV \), arXiv:1202.1997 [INSPIRE].

  100. S. Heinemeyer, O. Stål and G. Weiglein, Interpreting the LHC Higgs search results in the MSSM, Physics Letters B 710 (2012) 201 [arXiv:1112.3026].

    ADS  Google Scholar 

  101. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].

    ADS  Google Scholar 

  102. A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].

    ADS  Google Scholar 

  103. O. Buchmueller, R. Cavanaugh, A. De Roeck, M.J. Dolan, J.R. Ellis, H. Flacher, S. Heinemeyer, G. Isidori, J. Marrouche, D. Martinez Santos, K.A. Olive, S. Rogerson, F.J. Ronga, K.J. de Vries and G. Weiglein, Higgs and supersymmetry, arXiv:1112.3564.

  104. S. Akula, B. Altunkaynak, D. Feldman, P. Nath and G. Peim, Higgs boson mass predictions in SUGRA unification, recent LHC-7 results and dark matter, Phys. Rev. D 85 (2012) 075001 [arXiv:1112.3645] [INSPIRE].

    ADS  Google Scholar 

  105. S. Heinemeyer, Implications of SUSY searches at the LHC for the ILC, arXiv:1202.1991 [INSPIRE].

  106. K.A. Olive, The impact of XENON100 and the LHC on supersymmetric dark matter, arXiv:1202.2324 [INSPIRE].

  107. J. Ellis and K.A. Olive, Revisiting the Higgs mass and dark matter in the CMSSM, arXiv:1202.3262.

  108. A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin, et al., CompHEP: a package for evaluation of Feynman diagrams and integration over multiparticle phase space, hep-ph/9908288 [INSPIRE].

  109. T. Sjöstrand, P. Eden, C. Friberg, L. Lönnblad, G. Miu, et al., High-energy physics event generation with PYTHIA 6.1, Comput. Phys. Commun. 135 (2001) 238 [hep-ph/0010017] [INSPIRE].

    ADS  MATH  Google Scholar 

  110. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    ADS  Google Scholar 

  111. CTEQ collaboration, H. Lai et al., Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, Eur. Phys. J. C 12 (2000) 375 [hep-ph/9903282] [INSPIRE].

    ADS  Google Scholar 

  112. P.M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].

    ADS  Google Scholar 

  113. R.J. Scalise, The coordinated theoretical-experimental project on QCD, http://www.phys.psu.edu/cteq.

  114. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].

    ADS  Google Scholar 

  115. W. Beenakker, R. Hoepker and M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD, arXiv:hep-ph/9611232.

  116. M. Drees and C.-L. Shan, Reconstructing the velocity distribution of WIMPs from direct dark matter detection data, JCAP 06 (2007) 011 [astro-ph/0703651] [INSPIRE].

    ADS  Google Scholar 

  117. O. Mena, S. Palomares-Ruiz and S. Pascoli, Reconstructing WIMP properties with neutrino detectors, Phys. Lett. B 664 (2008) 92 [arXiv:0706.3909] [INSPIRE].

    ADS  Google Scholar 

  118. A.M. Green, Determining the WIMP mass from a single direct detection experiment, a more detailed study, JCAP 07 (2008) 005 [arXiv:0805.1704] [INSPIRE].

    ADS  Google Scholar 

  119. C-L Shan, Dark matter and particle physics, New. J. Phys. 11 (2009) 105013.

    Google Scholar 

  120. J. Billard, F. Mayet and D. Santos, Markov chain Monte Carlo analysis to constrain dark matter properties with directional detection, Phys. Rev. D 83 (2011) 075002 [arXiv:1012.3960] [INSPIRE].

    ADS  Google Scholar 

  121. S. Choi, S. Scopel, N. Fornengo and A. Bottino, Search at the CERN LHC for a light neutralino of cosmological interest, Phys. Rev. D 85 (2012) 035009 [arXiv:1108.2190] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arghya Choudhury.

Additional information

ArXiv ePrint: 1203.4106

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhury, A., Datta, A. Many faces of low mass neutralino dark matter in the unconstrained MSSM, LHC data and new signals. J. High Energ. Phys. 2012, 6 (2012). https://doi.org/10.1007/JHEP06(2012)006

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)006

Keywords

Navigation