Skip to main content
Log in

Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The minimal supergravity (mSUGRA or CMSSM) model is an oft-used frame- work for exhibiting the properties of neutralino (WIMP) cold dark matter (CDM). How- ever, the recent evidence from Atlas and CMS on a light Higgs scalar with mass \( {m_h} \simeq 125 \) GeV highly constrains the superparticle mass spectrum, which in turn constrains the neutralino annihilation mechanisms in the early universe. We find that stau and stop co-annihilation mechanisms — already highly stressed by the latest Atlas/CMS re- sults on SUSY searches — are nearly eliminated if indeed the light Higgs scalar has mass \( {m_h} \simeq 125 \) GeV. Furthermore, neutralino annihilation via the A-resonance is nearly ruled out in mSUGRA so that it is exceedingly difficult to generate thermally-produced neutralino-only dark matter at the measured abundance. The remaining possibility lies in the focus-point region which now moves out to \( {m_0} \sim 10 - 20 \) TeV range due to the required large trilinear soft SUSY breaking term A0. The remaining HB/FP region is more fine-tuned than before owing to the typically large top squark masses. We present updated direct and indirect detection rates for neutralino dark matter, and show that ton scale noble liquid detectors will either discover mixed higgsino CDM or essentially rule out thermally-produced neutralino-only CDM in the mSUGRA model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Witten, Dynamical breaking of supersymmetry, Nucl. Phys. B 188 (1981) 513 [INSPIRE].

    Article  ADS  Google Scholar 

  2. R.K. Kaul, Gauge hierarchy in a supersymmetric model, Phys. Lett. B 109 (1982) 19 [INSPIRE].

    ADS  Google Scholar 

  3. H. Baer and X. Tata, Weak scale supersymmetry: from superfields to scattering events, Cambridge University Press, Cambridge U.K. (2006).

    Book  MATH  Google Scholar 

  4. S. Dimopoulos, S. Raby and F. Wilczek, Supersymmetry and the scale of unification, Phys. Rev. D 24 (1981) 1681 [INSPIRE].

    ADS  Google Scholar 

  5. U. Amaldi, W. de Boer and H. Furstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP, Phys. Lett. B 260 (1991) 447 [INSPIRE].

    ADS  Google Scholar 

  6. J.R. Ellis, S. Kelley and D.V. Nanopoulos, Probing the desert using gauge coupling unification, Phys. Lett. B 260 (1991) 131 [INSPIRE].

    ADS  Google Scholar 

  7. P. Langacker and M.-x. Luo, Implications of precision electroweak experiments for M t , ρ 0 , sin 2 θ w and grand unification, Phys. Rev. D 44 (1991) 817 [INSPIRE].

    ADS  Google Scholar 

  8. H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m Z , Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].

    Article  ADS  Google Scholar 

  9. Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  10. J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].

    ADS  Google Scholar 

  11. J.R. Ellis, G. Ridolfi and F. Zwirner, On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches, Phys. Lett. B 262 (1991) 477 [INSPIRE].

    ADS  Google Scholar 

  12. R. Barbieri and M. Frigeni, The supersymmetric Higgs searches at LEP after radiative corrections, Phys. Lett. B 258 (1991) 395 [INSPIRE].

    ADS  Google Scholar 

  13. P.H. Chankowski, S. Pokorski and J. Rosiek, Complete on-shell renormalization scheme for the minimal supersymmetric Higgs sector, Nucl. Phys. B 423 (1994) 437 [hep-ph/9303309] [INSPIRE].

    Article  ADS  Google Scholar 

  14. J. Casas, J. Espinosa, M. Quirós and A. Riotto, The lightest Higgs boson mass in the minimal supersymmetric standard model, Nucl. Phys. B 436 (1995) 3 [Erratum ibid. B 439 (1995) 466-468] [hep-ph/9407389] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M.S. Carena, M. Quirós and C. Wagner, Effective potential methods and the Higgs mass spectrum in the MSSM, Nucl. Phys. B 461 (1996) 407 [hep-ph/9508343] [INSPIRE].

    Article  ADS  Google Scholar 

  16. R. Hempfling and A.H. Hoang, Two loop radiative corrections to the upper limit of the lightest Higgs boson mass in the minimal supersymmetric model, Phys. Lett. B 331 (1994) 99 [hep-ph/9401219] [INSPIRE].

    ADS  Google Scholar 

  17. R.-J. Zhang, Two loop effective potential calculation of the lightest CP even Higgs boson mass in the MSSM, Phys. Lett. B 447 (1999) 89 [hep-ph/9808299] [INSPIRE].

    ADS  Google Scholar 

  18. S. Heinemeyer, W. Hollik and G. Weiglein, QCD corrections to the masses of the neutral CP-even Higgs bosons in the MSSM, Phys. Rev. D 58 (1998) 091701 [hep-ph/9803277] [INSPIRE].

    ADS  Google Scholar 

  19. S. Heinemeyer, W. Hollik and G. Weiglein, Precise prediction for the mass of the lightest Higgs boson in the MSSM, Phys. Lett. B 440 (1998) 296 [hep-ph/9807423] [INSPIRE].

    ADS  Google Scholar 

  20. S. Heinemeyer, W. Hollik and G. Weiglein, The masses of the neutral CP-even Higgs bosons in the MSSM: accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].

    ADS  Google Scholar 

  21. S. Heinemeyer, W. Hollik and G. Weiglein, The mass of the lightest MSSM Higgs boson: a compact analytical expression at the two loop level, Phys. Lett. B 455 (1999) 179 [hep-ph/9903404] [INSPIRE].

    ADS  Google Scholar 

  22. M.S. Carena, H. Haber, S. Heinemeyer, W. Hollik, C. Wagner, et al., Reconciling the two loop diagrammatic and effective field theory computations of the mass of the lightest CP-even Higgs boson in the MSSM, Nucl. Phys. B 580 (2000) 29 [hep-ph/0001002] [INSPIRE].

    Article  ADS  Google Scholar 

  23. W. Hollik and D. Stöckinger, MSSM Higgs-boson mass predictions and two-loop non-supersymmetric counterterms, Phys. Lett. B 634 (2006) 63 [hep-ph/0509298] [INSPIRE].

    ADS  Google Scholar 

  24. M.S. Carena and H.E. Haber, Higgs boson theory and phenomenology, Prog. Part. Nucl. Phys. 50 (2003) 63 [hep-ph/0208209] [INSPIRE].

    Article  ADS  Google Scholar 

  25. ATLAS collaboration, F. Gianotti, talk given at CERN public seminar, 13 December 2011.

  26. ATLAS collaboration, Combination of Higgs boson searches with up to 4.9 fb -1 of pp collisions data taken at a center-of-mass energy of 7 TeV with the ATLAS experiment at the LHC, ATLAS-CONF-2011-163 (2011).

  27. CMS collaboration, G. Tonelli, talk given at CERN public seminar, 13 December 2011.

  28. L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Dine, A.E. Nelson, Y. Nir and Y. Shirman, New tools for low-energy dynamical supersymmetry breaking, Phys. Rev. D 53 (1996) 2658 [hep-ph/9507378] [INSPIRE].

    ADS  Google Scholar 

  31. G. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].

    ADS  Google Scholar 

  33. H. Baer, V. Barger, P. Huang and A. Mustafayev, Implications of a high mass light MSSM Higgs scalar for SUSY searches at the LHC, Phys. Rev. D 84 (2011) 091701 [arXiv:1109.3197] [INSPIRE].

    ADS  Google Scholar 

  34. H. Baer, V. Barger and A. Mustafayev, Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches, Phys. Rev. D 85 (2012) 075010 [arXiv:1112.3017] [INSPIRE].

    ADS  Google Scholar 

  35. H. Goldberg, Constraint on the photino mass from cosmology, Phys. Rev. Lett. 50 (1983) 1419 [Erratum ibid. 103 (2009) 099905] [INSPIRE].

    Article  ADS  Google Scholar 

  36. J.R. Ellis, J. Hagelin, D.V. Nanopoulos and M. Srednicki, Search for supersymmetry at the \( \overline p p \) collider, Phys. Lett. B 127 (1983) 233 [INSPIRE].

    ADS  Google Scholar 

  37. J.R. Ellis, J. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric relics from the Big Bang, Nucl. Phys. B 238 (1984) 453 [INSPIRE].

    Article  ADS  Google Scholar 

  38. E.A. Baltz, M. Battaglia, M.E. Peskin and T. Wizansky, Determination of dark matter properties at high-energy colliders, Phys. Rev. D 74 (2006) 103521 [hep-ph/0602187] [INSPIRE].

    ADS  Google Scholar 

  39. J.L. Feng, Dark matter candidates from particle physics and methods of detection, Ann. Rev. Astron. Astrophys. 48 (2010) 495 [arXiv:1003.0904] [INSPIRE].

    Article  ADS  Google Scholar 

  40. A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally supersymmetric grand unification, Phys. Rev. Lett. 49 (1982) 970 [INSPIRE].

    Article  ADS  Google Scholar 

  41. R. Barbieri, S. Ferrara and C.A. Savoy, Gauge models with spontaneously broken local supersymmetry, Phys. Lett. B 119 (1982) 343 [INSPIRE].

    ADS  Google Scholar 

  42. N. Ohta, Grand unified theories based on local supersymmetry, Prog. Theor. Phys. 70 (1983) 542 [INSPIRE].

    Article  ADS  Google Scholar 

  43. L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the messenger of supersymmetry breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE].

    ADS  Google Scholar 

  44. for a recent review, see R. Arnowitt and P. Nath, arXiv:0912.2273 R. Arnowitt and P. Nath, Developments in supergravity unified models, arXiv:0912.2273 [INSPIRE].

  45. V.D. Barger, M. Berger and P. Ohmann, Supersymmetric grand unified theories: two loop evolution of gauge and Yukawa couplings, Phys. Rev. D 47 (1993) 1093 [hep-ph/9209232] [INSPIRE].

    ADS  Google Scholar 

  46. G.L. Kane, C.F. Kolda, L. Roszkowski and J.D. Wells, Study of constrained minimal supersymmetry, Phys. Rev. D 49 (1994) 6173 [hep-ph/9312272] [INSPIRE].

    ADS  Google Scholar 

  47. Tevatron Electroweak Working Group, for the CDF and D0 Collaborations collaboration, Combination of CDF and D0 results on the mass of the top quark using up to 5.8 fb -1 of data, arXiv:1107.5255 [INSPIRE].

  48. H. Baer and M. Brhlik, Cosmological relic density from minimal supergravity with implications for collider physics, Phys. Rev. D 53 (1996) 597 [hep-ph/9508321] [INSPIRE].

    ADS  Google Scholar 

  49. Joint LEP 2 Supersymmetry Working Group, Combined LEP slepton results up to 208 GeV, http://lepsusy.web.cern.ch/lepsusy/www/sleptons_summer04/slep_final.html.

  50. J.R. Ellis, T. Falk and K.A. Olive, Neutralino-stau coannihilation and the cosmological upper limit on the mass of the lightest supersymmetric particle, Phys. Lett. B 444 (1998) 367 [hep-ph/9810360] [INSPIRE].

    ADS  Google Scholar 

  51. J.R. Ellis, T. Falk, K.A. Olive and M. Srednicki, Calculations of neutralino-stau coannihilation channels and the cosmologically relevant region of MSSM parameter space, Astropart. Phys. 13 (2000) 181 [Erratum ibid. 15 (2001) 413-414] [hep-ph/9905481] [INSPIRE].

    Article  ADS  Google Scholar 

  52. M. Gomez, G. Lazarides and C. Pallis, Supersymmetric cold dark matter with Yukawa unification, Phys. Rev. D 61 (2000) 123512 [hep-ph/9907261] [INSPIRE].

    ADS  Google Scholar 

  53. M. Gomez, G. Lazarides and C. Pallis, Yukawa unification, Bsγ and bino-stau coannihilation, Phys. Lett. B 487 (2000) 313 [hep-ph/0004028] [INSPIRE].

    ADS  Google Scholar 

  54. A. Lahanas, D.V. Nanopoulos and V. Spanos, Neutralino relic density in a universe with nonvanishing cosmological constant, Phys. Rev. D 62 (2000) 023515 [hep-ph/9909497] [INSPIRE].

    ADS  Google Scholar 

  55. R.L. Arnowitt, B. Dutta and Y. Santoso, Coannihilation effects in supergravity and D-brane models, Nucl. Phys. B 606 (2001) 59 [hep-ph/0102181] [INSPIRE].

    Article  ADS  Google Scholar 

  56. M. Drees and M.M. Nojiri, The neutralino relic density in minimal N = 1 supergravity, Phys. Rev. D 47 (1993) 376 [hep-ph/9207234] [INSPIRE].

    ADS  Google Scholar 

  57. H. Baer and M. Brhlik, Neutralino dark matter in minimal supergravity: direct detection versus collider searches, Phys. Rev. D 57 (1998) 567 [hep-ph/9706509] [INSPIRE].

    ADS  Google Scholar 

  58. H. Baer, M. Brhlik, M.A. Diaz, J. Ferrandis, P. Mercadante, et al., Yukawa unified supersymmetric SO(10) model: cosmology, rare decays and collider searches, Phys. Rev. D 63 (2000) 015007 [hep-ph/0005027] [INSPIRE].

    ADS  Google Scholar 

  59. J.R. Ellis, T. Falk, G. Ganis, K.A. Olive and M. Srednicki, The CMSSM parameter space at large tan β, Phys. Lett. B 510 (2001) 236 [hep-ph/0102098] [INSPIRE].

    ADS  Google Scholar 

  60. L. Roszkowski, R. Ruiz de Austri and T. Nihei, New cosmological and experimental constraints on the CMSSM, JHEP 08 (2001) 024 [hep-ph/0106334] [INSPIRE].

    Article  ADS  Google Scholar 

  61. A. Djouadi, M. Drees and J. Kneur, Constraints on the minimal supergravity model and prospects for SUSY particle production at future linear e + e - colliders, JHEP 08 (2001) 055 [hep-ph/0107316] [INSPIRE].

    Article  ADS  Google Scholar 

  62. A. Lahanas and V. Spanos, Implications of the pseudoscalar Higgs boson in determining the neutralino dark matter, Eur. Phys. J. C 23 (2002) 185 [hep-ph/0106345] [INSPIRE].

    Article  ADS  Google Scholar 

  63. K.L. Chan, U. Chattopadhyay and P. Nath, Naturalness, weak scale supersymmetry and the prospect for the observation of supersymmetry at the Tevatron and at the CERN LHC, Phys. Rev. D 58 (1998) 096004 [hep-ph/9710473] [INSPIRE].

    ADS  Google Scholar 

  64. J.L. Feng, K.T. Matchev and T. Moroi, Multi-TeV scalars are natural in minimal supergravity, Phys. Rev. Lett. 84 (2000) 2322 [hep-ph/9908309] [INSPIRE].

    Article  ADS  Google Scholar 

  65. J.L. Feng, K.T. Matchev and T. Moroi, Focus points and naturalness in supersymmetry, Phys. Rev. D 61 (2000) 075005 [hep-ph/9909334] [INSPIRE].

    ADS  Google Scholar 

  66. H. Baer, C.-h. Chen, F. Paige and X. Tata, Signals for minimal supergravity at the CERN large hadron collider: multi-jet plus missing energy channel, Phys. Rev. D 52 (1995) 2746 [hep-ph/9503271] [INSPIRE].

    ADS  Google Scholar 

  67. H. Baer, C.-h. Chen, F. Paige and X. Tata, Signals for minimal supergravity at the CERN large hadron collider. 2: multi-lepton channels, Phys. Rev. D 53 (1996) 6241 [hep-ph/9512383] [INSPIRE].

    ADS  Google Scholar 

  68. H. Baer, C.-h. Chen, M. Drees, F. Paige and X. Tata, Probing minimal supergravity at the CERN LHC for large tan β, Phys. Rev. D 59 (1999) 055014 [hep-ph/9809223] [INSPIRE].

    ADS  Google Scholar 

  69. H. Baer, T. Krupovnickas, S. Profumo and P. Ullio, Model independent approach to 2 point supersymmetry: from dark matter to collider searches, JHEP 10 (2005) 020 [hep-ph/0507282] [INSPIRE].

    Article  ADS  Google Scholar 

  70. C. Boehm, A. Djouadi and M. Drees, Light scalar top quarks and supersymmetric dark matter, Phys. Rev. D 62 (2000) 035012 [hep-ph/9911496] [INSPIRE].

    ADS  Google Scholar 

  71. J.R. Ellis, K.A. Olive and Y. Santoso, Calculations of neutralino stop coannihilation in the CMSSM, Astropart. Phys. 18 (2003) 395 [hep-ph/0112113] [INSPIRE].

    Article  ADS  Google Scholar 

  72. J. Edsjo, M. Schelke, P. Ullio and P. Gondolo, Accurate relic densities with neutralino, chargino and sfermion coannihilations in mSUGRA, JCAP 04 (2003) 001 [hep-ph/0301106] [INSPIRE].

    Article  ADS  Google Scholar 

  73. P. Nath and R.L. Arnowitt, Predictions in SU(5) supergravity grand unification with proton stability and relic density constraints, Phys. Rev. Lett. 70 (1993) 3696 [hep-ph/9302318] [INSPIRE].

    Article  ADS  Google Scholar 

  74. A. Djouadi, M. Drees and J.-L. Kneur, Neutralino dark matter in mSUGRA: reopening the light Higgs pole window, Phys. Lett. B 624 (2005) 60 [hep-ph/0504090] [INSPIRE].

    ADS  Google Scholar 

  75. H. Baer, A.D. Box and H. Summy, Mainly axion cold dark matter in the minimal supergravity model, JHEP 08 (2009) 080 [arXiv:0906.2595] [INSPIRE].

    Article  ADS  Google Scholar 

  76. T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [INSPIRE].

    Article  ADS  Google Scholar 

  77. G.B. Gelmini and P. Gondolo, Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model, Phys. Rev. D 74 (2006) 023510 [hep-ph/0602230] [INSPIRE].

    ADS  Google Scholar 

  78. G. Gelmini, P. Gondolo, A. Soldatenko and C.E. Yaguna, The effect of a late decaying scalar on the neutralino relic density, Phys. Rev. D 74 (2006) 083514 [hep-ph/0605016] [INSPIRE].

    ADS  Google Scholar 

  79. G.B. Gelmini, P. Gondolo, A. Soldatenko and C. Yaguna, Direct detection of neutralino dark matter in non-standard cosmologies, Phys. Rev. D 76 (2007) 015010 [hep-ph/0610379] [INSPIRE].

    ADS  Google Scholar 

  80. B.S. Acharya, K. Bobkov, G.L. Kane, P. Kumar and J. Shao, Explaining the electroweak scale and stabilizing moduli in M-theory, Phys. Rev. D 76 (2007) 126010 [hep-th/0701034] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  81. B.S. Acharya, K. Bobkov, G.L. Kane, J. Shao and P. Kumar, The G2 -MSSM: an M-theory motivated model of particle physics, Phys. Rev. D 78 (2008) 065038 [arXiv:0801.0478] [INSPIRE].

    ADS  Google Scholar 

  82. B.S. Acharya, P. Kumar, K. Bobkov, G. Kane, J. Shao, et al., Non-thermal dark matter and the moduli problem in string frameworks, JHEP 06 (2008) 064 [arXiv:0804.0863] [INSPIRE].

    Article  ADS  Google Scholar 

  83. K.-Y. Choi, J.E. Kim, H.M. Lee and O. Seto, Neutralino dark matter from heavy axino decay, Phys. Rev. D 77 (2008) 123501 [arXiv:0801.0491] [INSPIRE].

    ADS  Google Scholar 

  84. H. Baer, A. Lessa, S. Rajagopalan and W. Sreethawong, Mixed axion/neutralino cold dark matter in supersymmetric models, JCAP 06 (2011) 031 [arXiv:1103.5413] [INSPIRE].

    Article  ADS  Google Scholar 

  85. H. Baer, A. Lessa and W. Sreethawong, Coupled Boltzmann calculation of mixed axion/neutralino cold dark matter production in the early universe, JCAP 01 (2012) 036 [arXiv:1110.2491] [INSPIRE].

    Article  ADS  Google Scholar 

  86. ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7 \) TeV proton-proton collisions, Phys. Lett. B 710 (2012) 67 [arXiv:1109.6572] [INSPIRE].

    ADS  Google Scholar 

  87. CMS collaboration, S. Chatrchyan et al., Search for supersymmetry at the LHC in events with jets and missing transverse energy, Phys. Rev. Lett. 107 (2011) 221804 [arXiv:1109.2352] [INSPIRE].

    Article  ADS  Google Scholar 

  88. J.L. Feng, K.T. Matchev and D. Sanford, Focus point supersymmetry redux, Phys. Rev. D 85 (2012) 075007 [arXiv:1112.3021] [INSPIRE].

    ADS  Google Scholar 

  89. G. Kane, P. Kumar, R. Lu and B. Zheng, Higgs mass prediction for realistic string/M theory vacua, Phys. Rev. D 85 (2012) 075026 [arXiv:1112.1059] [INSPIRE].

    ADS  Google Scholar 

  90. I. Gogoladze, Q. Shafi and C.S. Un, Higgs boson mass from t-b-τ Yukawa unification, arXiv:1112.2206 [INSPIRE].

  91. L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].

    Article  ADS  Google Scholar 

  92. T. Li, J.A. Maxin, D.V. Nanopoulos and J.W. Walker, A Higgs mass shift to 125 GeV and a multi-jet supersymmetry signal: miracle of the flippons at the \( \sqrt {s} = 7 \) TeV LHC, Phys. Lett. B 710 (2012) 207 [arXiv:1112.3024] [INSPIRE].

    ADS  Google Scholar 

  93. M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    Article  ADS  Google Scholar 

  94. S. Akula, B. Altunkaynak, D. Feldman, P. Nath and G. Peim, Higgs boson mass predictions in SUGRA unification, recent LHC-7 results and dark matter, Phys. Rev. D 85 (2012) 075001 [arXiv:1112.3645] [INSPIRE].

    ADS  Google Scholar 

  95. M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, arXiv:1112.3647 [INSPIRE].

  96. O. Buchmueller, R. Cavanaugh, A. De Roeck, M. Dolan, J. Ellis, et al., Higgs and supersymmetry, arXiv:1112.3564 [INSPIRE].

  97. J. Cao, Z. Heng, D. Li and J.M. Yang, Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM, Phys. Lett. B 710 (2012) 665 [arXiv:1112.4391] [INSPIRE].

    ADS  Google Scholar 

  98. U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, JHEP 03 (2012) 044 [arXiv:1112.3548] [INSPIRE].

    Article  ADS  Google Scholar 

  99. J. Cao, Z. Heng, D. Li and J.M. Yang, Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM, Phys. Lett. B 710 (2012) 665 [arXiv:1112.4391] [INSPIRE].

    ADS  Google Scholar 

  100. W. Schlatter and P. Zerwas, Searching for Higgs : from LEP towards LHC, Eur. Phys. J. H 36 (2012) 579 [arXiv:1112.5127] [INSPIRE].

    Google Scholar 

  101. J.F. Gunion, Y. Jiang and S. Kraml, The constrained NMSSM and Higgs near 125 GeV, Phys. Lett. B 710 (2012) 454 [arXiv:1201.0982] [INSPIRE].

    ADS  Google Scholar 

  102. P. Fileviez Perez, SUSY spectrum and the Higgs mass in the BLMSSM, Phys. Lett. B 711 (2012) 353 [arXiv:1201.1501] [INSPIRE].

    ADS  Google Scholar 

  103. A. Lahanas and V.C. Spanos, Dilaton dominance relaxes LHC and cosmological constraints in supersymmetric models, arXiv:1201.2601 [INSPIRE].

  104. S. King, M. Muhlleitner and R. Nevzorov, NMSSM Higgs benchmarks near 125 GeV, Nucl. Phys. B 860 (2012) 207 [arXiv:1201.2671] [INSPIRE].

    Article  ADS  Google Scholar 

  105. T.G. Rizzo, Gauge kinetic mixing in the E 6 SSM, Phys. Rev. D 85 (2012) 055010 [arXiv:1201.2898] [INSPIRE].

    ADS  Google Scholar 

  106. H. Baer, I. Gogoladze, A. Mustafayev, S. Raza and Q. Shafi, Sparticle mass spectra from SU(5) SUSY GUT models with b−τ Yukawa coupling unification, JHEP 03 (2012) 047 [arXiv:1201.4412] [INSPIRE].

    Article  ADS  Google Scholar 

  107. Z. Kang, J. Li and T. Li, On naturalness of the (N)MSSM, arXiv:1201.5305 [INSPIRE].

  108. C.-F. Chang, K. Cheung, Y.-C. Lin and T.-C. Yuan, Mimicking the standard model Higgs boson in UMSSM, arXiv:1202.0054 [INSPIRE].

  109. L. Aparicio, D. Cerdeno and L. Ibáñez, A 119-125 GeV Higgs from a string derived slice of the CMSSM, JHEP 04 (2012) 126 [arXiv:1202.0822] [INSPIRE].

    Article  ADS  Google Scholar 

  110. K.A. Olive, The impact of XENON100 and the LHC on supersymmetric dark matter, arXiv:1202.2324 [INSPIRE].

  111. L. Roszkowski, E.M. Sessolo and Y.-L.S. Tsai, Bayesian implications of current LHC supersymmetry and dark matter detection searches for the constrained MSSM, arXiv:1202.1503 [INSPIRE].

  112. J. Ellis, M.K. Gaillard and D.V. Nanopoulos, A historical profile of the Higgs boson, arXiv:1201.6045 [INSPIRE].

  113. J. Ellis and K.A. Olive, Revisiting the Higgs mass and dark matter in the CMSSM, arXiv:1202.3262 [INSPIRE].

  114. H. Baer and C. Balázs, χ 2 analysis of the minimal supergravity model including WMAP, g μ - 2 and Bsγ constraints, JCAP 05 (2003) 006 [hep-ph/0303114] [INSPIRE].

    Article  ADS  Google Scholar 

  115. H. Baer, A. Belyaev, T. Krupovnickas and A. Mustafayev, SUSY normal scalar mass hierarchy reconciles g μ − 2Bs γ and relic density, JHEP 06 (2004) 044 [hep-ph/0403214] [INSPIRE].

    Article  ADS  Google Scholar 

  116. H. Baer, A. Mustafayev, E.-K. Park and X. Tata, Collider signals and neutralino dark matter detection in relic-density-consistent models without universality, JHEP 05 (2008) 058 [arXiv:0802.3384] [INSPIRE].

    Article  ADS  Google Scholar 

  117. H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Neutralino cold dark matter in a one parameter extension of the minimal supergravity model, Phys. Rev. D 71 (2005) 095008 [hep-ph/0412059] [INSPIRE].

    ADS  Google Scholar 

  118. F.E. Paige, S.D. Protopopescu, H. Baer and X. Tata, ISAJET 7.69: a Monte Carlo event generator for pp, \( \overline p p \) and e + e reactions, hep-ph/0312045 [INSPIRE].

  119. H. Baer, C.-H. Chen, R.B. Munroe, F.E. Paige and X. Tata, Multichannel search for minimal supergravity at \( p\overline p \) and e + e colliders, Phys. Rev. D 51 (1995) 1046 [hep-ph/9408265] [INSPIRE].

    ADS  Google Scholar 

  120. H. Baer, J. Ferrandis, S. Kraml and W. Porod, On the treatment of threshold effects in SUSY spectrum computations, Phys. Rev. D 73 (2006) 015010 [hep-ph/0511123] [INSPIRE].

    ADS  Google Scholar 

  121. Joint LEP 2 Supersymmetry Working Group, Combined LEP chargino results up to 208 GeV, http://lepsusy.web.cern.ch/lepsusy/www/inos_moriond01/charginos_pub.html

  122. Muon (g-2) collaboration, G. Bennett et al., An improved limit on the muon electric dipole moment, Phys. Rev. D 80 (2009) 052008 [arXiv:0811.1207] [INSPIRE].

    ADS  Google Scholar 

  123. H. Baer, C. Bal´azs and A. Belyaev, Neutralino relic density in minimal supergravity with coannihilations, JHEP 03 (2002) 042 [hep-ph/0202076] [INSPIRE].

    Article  ADS  Google Scholar 

  124. WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].

    Article  ADS  Google Scholar 

  125. J.R. Ellis and K.A. Olive, How finely tuned is supersymmetric dark matter?, Phys. Lett. B 514 (2001) 114 [hep-ph/0105004] [INSPIRE].

    ADS  Google Scholar 

  126. J.R. Ellis, K.A. Olive and Y. Santoso, The MSSM parameter space with nonuniversal Higgs masses, Phys. Lett. B 539 (2002) 107 [hep-ph/0204192] [INSPIRE].

    ADS  Google Scholar 

  127. J.R. Ellis, T. Falk, K.A. Olive and Y. Santoso, Exploration of the MSSM with nonuniversal Higgs masses, Nucl. Phys. B 652 (2003) 259 [hep-ph/0210205] [INSPIRE].

    Article  ADS  Google Scholar 

  128. H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Neutralino cold dark matter in a one parameter extension of the minimal supergravity model, Phys. Rev. D 71 (2005) 095008 [hep-ph/0412059] [INSPIRE].

    ADS  Google Scholar 

  129. H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Direct, indirect and collider detection of neutralino dark matter in SUSY models with non-universal Higgs masses, JHEP 07 (2005) 065 [hep-ph/0504001] [INSPIRE].

    Article  ADS  Google Scholar 

  130. H. Baer, V. Barger, A. Lessa and X. Tata, LHC discovery potential for supersymmetry with \( \sqrt {s} = 7 \) TeV and 5.30 fb −1, Phys. Rev. D 85 (2012) 051701 [arXiv:1112.3044] [INSPIRE].

    ADS  Google Scholar 

  131. H. Baer, X. Tata and J. Woodside, Multi-lepton signals from supersymmetry at hadron super colliders, Phys. Rev. D 45 (1992) 142 [INSPIRE].

    ADS  Google Scholar 

  132. H. Baer, C.-h. Chen, F. Paige and X. Tata, Signals for minimal supergravity at the CERN large hadron collider: multi-jet plus missing energy channel, Phys. Rev. D 52 (1995) 2746 [hep-ph/9503271] [INSPIRE].

    ADS  Google Scholar 

  133. H. Baer, C.-h. Chen, F. Paige and X. Tata, Signals for minimal supergravity at the CERN large hadron collider. 2: multi-lepton channels, Phys. Rev. D 53 (1996) 6241 [hep-ph/9512383] [INSPIRE].

    ADS  Google Scholar 

  134. H. Baer, C.-h. Chen, M. Drees, F. Paige and X. Tata, Probing minimal supergravity at the CERN LHC for large tan β, Phys. Rev. D 59 (1999) 055014 [hep-ph/9809223] [INSPIRE].

    ADS  Google Scholar 

  135. H. Baer, C. Bal´azs, A. Belyaev, T. Krupovnickas and X. Tata, Updated reach of the CERN LHC and constraints from relic density, b → sγ and a μ in the mSUGRA model, JHEP 06 (2003) 054 [hep-ph/0304303] [INSPIRE].

    Article  ADS  Google Scholar 

  136. S. Abdullin and F. Charles, Search for SUSY in (leptons +) jets + E T (miss) final states, Nucl. Phys. B 547 (1999) 60 [hep-ph/9811402] [INSPIRE].

    Article  ADS  Google Scholar 

  137. CMS collaboration, S. Abdullin et al., Discovery potential for supersymmetry in CMS, J. Phys. G 28 (2002) 469 [hep-ph/9806366] [INSPIRE].

    ADS  Google Scholar 

  138. B. Allanach, J. Hetherington, M.A. Parker and B. Webber, Naturalness reach of the large hadron collider in minimal supergravity, JHEP 08 (2000) 017 [hep-ph/0005186] [INSPIRE].

    ADS  Google Scholar 

  139. H. Baer, V. Barger, A. Lessa and X. Tata, Supersymmetry discovery potential of the LHC at \( \sqrt {s} = 10 \) TeV and 14 TeV without and with missing E T , JHEP 09 (2009) 063 [arXiv:0907.1922] [INSPIRE].

    Article  ADS  Google Scholar 

  140. H. Baer, C. Balázs, A. Belyaev and J. O’Farrill, Direct detection of dark matter in supersymmetric models, JCAP 09 (2003) 007 [hep-ph/0305191] [INSPIRE].

    Article  ADS  Google Scholar 

  141. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].

    Article  ADS  Google Scholar 

  142. J.L. Feng, K.T. Matchev and F. Wilczek, Neutralino dark matter in 2 point supersymmetry, Phys. Lett. B 482 (2000) 388 [hep-ph/0004043] [INSPIRE].

    ADS  Google Scholar 

  143. J.L. Feng, K.T. Matchev and F. Wilczek, Prospects for indirect detection of neutralino dark matter, Phys. Rev. D 63 (2001) 045024 [astro-ph/0008115] [INSPIRE].

    ADS  Google Scholar 

  144. V.D. Barger, F. Halzen, D. Hooper and C. Kao, Indirect search for neutralino dark matter with high-energy neutrinos, Phys. Rev. D 65 (2002) 075022 [hep-ph/0105182] [INSPIRE].

    ADS  Google Scholar 

  145. H. Baer, A. Belyaev, T. Krupovnickas and J. O’Farrill, Indirect, direct and collider detection of neutralino dark matter, JCAP 08 (2004) 005 [hep-ph/0405210] [INSPIRE].

    ADS  Google Scholar 

  146. H. Baer, E.-K. Park and X. Tata, Collider, direct and indirect detection of supersymmetric dark matter, New J. Phys. 11 (2009) 105024 [arXiv:0903.0555] [INSPIRE].

    Article  ADS  Google Scholar 

  147. XENON100 collaboration, E. Aprile et al., Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].

    Article  ADS  Google Scholar 

  148. Xenon collaboration, E. Aprile, talk given at WONDER Workshop, LNGS, 22 March 2010.

  149. H. Baer, A. Mustafayev, E.-K. Park and X. Tata, Target dark matter detection rates in models with a well-tempered neutralino, JCAP 01 (2007) 017 [hep-ph/0611387] [INSPIRE].

    Article  ADS  Google Scholar 

  150. H. Baer, A. Mustafayev, E.-K. Park and X. Tata, Collider signals and neutralino dark matter detection in relic-density-consistent models without universality, JHEP 05 (2008) 058 [arXiv:0802.3384] [INSPIRE].

    Article  ADS  Google Scholar 

  151. D. McKinsey, D. Akerib, S. Bedikian, A. Bernstein, A. Bolozdynya, et al., The LUX dark matter search, J. Phys. Conf. Ser. 203 (2010) 012026 [INSPIRE].

    Article  ADS  Google Scholar 

  152. E. Behnke, J. Behnke, S. Brice, D. Broemmelsiek, J. Collar, et al., Improved limits on spin-dependent WIMP-Proton interactions from a two liter CF 3 I bubble chamber, Phys. Rev. Lett. 106 (2011) 021303 [arXiv:1008.3518] [INSPIRE].

    Article  ADS  Google Scholar 

  153. COUPP collaboration, W.H. Lippincott, talk given at TAUP conference, Munich Germany, 7 September 2011.

  154. IceCube collaboration, R. Abbasi et al., Multi-year search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors, Phys. Rev. D 85 (2012) 042002 [arXiv:1112.1840] [INSPIRE].

    ADS  Google Scholar 

  155. T.E. Jeltema and S. Profumo, Searching for dark matter with X-ray observations of local dwarf galaxies, arXiv:0805.1054 [INSPIRE].

  156. Fermi-LAT collaboration, M. Ackermann et al., Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi large area telescope, Phys. Rev. Lett. 107 (2011) 241302 [arXiv:1108.3546] [INSPIRE].

    Article  ADS  Google Scholar 

  157. A. Geringer-Sameth and S.M. Koushiappas, Exclusion of canonical WIMPs by the joint analysis of Milky Way dwarfs with Fermi, Phys. Rev. Lett. 107 (2011) 241303 [arXiv:1108.2914] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Baer.

Additional information

ArXiv ePrint: 1202.4038

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baer, H., Barger, V. & Mustafayev, A. Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar. J. High Energ. Phys. 2012, 91 (2012). https://doi.org/10.1007/JHEP05(2012)091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2012)091

Keywords

Navigation