Skip to main content
Log in

Genetische Risikofaktoren für den Myokardinfarkt

Genetic risk faktors for myocardial infarction

  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

In der Pathogenese der koronaren Herzerkrankung und des Myokardinfarkts spielen sowohl genetische Faktoren als auch Umwelteinflüsse und deren Interaktionen eine große Rolle. In ihrer Kausalität noch am wenigsten verstanden ist jedoch die genetisch determinierte familiäre Belastung — oder positive Familienanamnese —, die in großen Studien neben dem LDL-Cholesterin als wichtigster Risikofaktor identifiziert wurde. Insbesondere bei Auftreten eines akuten Myokardinfarkts bei sehr jungen Patienten wird die genetische Belastung als der führende kausale Faktor diskutiert. Die Bedeutung der erblichen Belastung ist jedoch nicht klar definiert. Zahlreiche Kandidatengene sowie genetische Polymorphismen wurden identifiziert, die bei der Blutdruckregulation, im Lipidmetabolismus, bei der Endothelfunktion, bei der Thrombusbildung oder Gerinnungskaskade oder auch in der interventionellen Kardiologie bedeutsam scheinen.

Die Aufklärung der genetischen Faktoren kardiovaskulärer Erkrankungen steht an ihrem Anfang, es ist jedoch zu erwarten, daß das Wissen um die Bedeutung und funktionelle Relevanz genetischer Faktoren eine effektivere Prävention und Therapie bei Patienten erlaubt, deren genetisches Profil ein erhöhtes Risiko beinhaltet.

Abstract

Interactions of genetic and environmental risk factors influence the susceptibility to coronary artery disease (CAD) and myocardial infarction. In myocardial infarction occurring at young age, genetics of this multifactorial disease may be the leading factor. A number of candidate genes have been implicated in the pathogenesis of CAD and myocardial infarction. Mutations in the DNA sequence (gene polymorphisms) have been identified that appear to play a crucial role in blood pressure regulation, lipid metabolism, endothelial function, in the pathophysiology of coagulation or thrombosis, or in interventional cardiology by interfering with restenosis development. Genetic polymophisms seem to be clinically important because they not only potentiate the individual risk under certain circumstances, but they also determine safety and effectiveness of commonly prescribed drugs.

Understanding the complexity and functional relevance of genetic risk factors will be useful in early detection and treatment of individuals that are exposed to higher risk for myocardial infarction. Thus it is important to include genetic risk factors in the concept of the classical risk factor theory. Potentially in future a genetic risk profile including relevant polymorphisms may be an essential part of the clinicians' knowledge in primary and secondary prevention of coronary artery disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literatur

  1. Amant C, Bauters C, Bodart JC, et al. D allele of the angiotensin I-converting enzyme is a major risk factor for restenosis after coronary stenting. Circulation 1997;96:56–60.

    PubMed  CAS  Google Scholar 

  2. Anderson JL, Muhlestein JB, Habashi J, et al. Lack of association of a common polymorphism of the plasminogen activator inhibitor-1 gene with coronary artery disease and myocardial infarction. J Am Coll Cardiol 1999;34:1778–83.

    Article  PubMed  CAS  Google Scholar 

  3. Ardissino D, Mannucci PM, Merlini PA, et al. Prothrombotic genetic risk factors in young survivors of myocardial infarction. Blood 1999;94:46–51.

    PubMed  CAS  Google Scholar 

  4. Assmann G, Schulte H. Identification of individuals at high risk for myocardial infarction. Atherosclerosis 1994;110:Suppl:S11–21.

    Article  Google Scholar 

  5. Assmann G, Schulte H, Cullen P. New and classical risk factors — the Munster heart study (PROCAM). Eur J Med Res 1997;2:237–42.

    PubMed  CAS  Google Scholar 

  6. Azumi H, Inoue N, Takeshita S, et al. Expression of NADH/NADPH oxidase p22phox in human coronary arteries. Circulation 1999; 100:1494–8.

    PubMed  CAS  Google Scholar 

  7. Bostom A G, Selhub J. Homocysteine and arteriosclerosis: subclinical and clinical disease associations [editorial]. Circulation 1999;99:2361–3.

    PubMed  CAS  Google Scholar 

  8. Britten MB, Schachinger V. Coronary endothelial dysfunction associated with ecNOS-polymorphism. Circulation 1999;100:1–49.

    Google Scholar 

  9. Cambien F. Insight into the genetic epidemiology of coronary heart disease. Ann Med 1996;28:465–70.

    Article  PubMed  CAS  Google Scholar 

  10. Cambien F, Evans A. Angiotensin I converting enzyme gene polymorphism and coronary heart disease. Eur Heart J 1995;16:Suppl K:13–22.

    PubMed  Google Scholar 

  11. Cambien F, Poirier O, Lecerf L, et al. Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature 1992;359:641–4.

    Article  PubMed  CAS  Google Scholar 

  12. Carter AM, Ossei-Gerning N, Wilson IJ, et al. Association of the platelet PI(A) polymorphism of glycoprotein IIb/IIIa and the fibrinogen Bbeta 448 polymorphism with myocardial infarction and extent of coronary artery disease. Circulation 1997;96:1424–31.

    PubMed  CAS  Google Scholar 

  13. Chambers JC, McGregor A, Jean-Marie J, et al. Acute hyperhomocysteinaemia and endothelial dysfunction. Lancet 1998;351:36–7.

    Article  PubMed  CAS  Google Scholar 

  14. Colditz GA, Stampfer MJ, Willett WC, et al. A prospective study of parental history of myocardial infarction and coronary heart disease in women. Am J Epidemiol 1986;123:48–58.

    PubMed  CAS  Google Scholar 

  15. Doggen CJ, Bertina RM, Cats VM, et al. The 4G/5G polymorphism in the plasminogen activator inhibitor-1 gene is not associated with myocardial infarction. Thromb Haemost 1999;82:115–20.

    PubMed  CAS  Google Scholar 

  16. Eriksson P, Kallin B, 't Hooft FM, et al. Allele-specific increase in basal transcription of the plasminogen-activator inhibitor 1 gene is associated with myocardial infarction. Proc Natl Acad Sci USA 1995;92:1851–5.

    Article  PubMed  CAS  Google Scholar 

  17. Feng D, Lindpaintner K, Larson MG, et al. Increased platelet aggregability associated with platelet GPIIIa PIA2 polymorphism: the Framingham Offspring Study. Arterioscler Thromb Vasc Biol 1999;19:1142–7.

    PubMed  CAS  Google Scholar 

  18. Fuster V, Badimon L, Badimon JJ, et al. The pathogenesis of coronary artery disease and the acute coronary syndromes (1), N Engl J Med 1992;326:242–50.

    PubMed  CAS  Google Scholar 

  19. Fuster V, Badimon L, Badimon JJ, et al. The pathogenesis of coronary artery disease and the acute coronary syndromes (2). N Engl J Med 1992;326:310–8.

    PubMed  CAS  Google Scholar 

  20. Fuster V, Steele PM, Chesebro JH. Role of platelets and thrombosis in coronary atherosclerotic disease and sudden death. J Am Coll Cardiol 1985;5:175B-84B.

    PubMed  CAS  Google Scholar 

  21. Gardemann A, Lohre J, Katz N, et al. The 4G4G genotype of the plasminogen activator inhibitor 4G/5G gene polymorphism is associated with coronary atherosclerosis in patients at high risk for this disease. Thromb Haemost 1999;82:1121–6.

    PubMed  CAS  Google Scholar 

  22. Gotto AM Jr. The Multiple Risk Factor Intervention Trial (MRFIT). A return to a landmark trial. JAMA 1997;277:595–7.

    Article  PubMed  Google Scholar 

  23. Grundy SM, Pasternak R, Greenland P, et al. Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations: a statement for healthcare professionals from the American Heart Association and the American College of Cardiology. Circulation 1999;100:1481–92.

    PubMed  CAS  Google Scholar 

  24. Hamon M, Bauters C, Amant C, et al. Relation between the deletion polymorphism of the angiotensin- converting enzyme gene and late luminal narrowing after coronary angioplasty. Circulation 1995;92:296–9.

    PubMed  CAS  Google Scholar 

  25. Hamsten A. Molecular genetics as the route to understanding, prevention, and treatment. Lancet 1996;348:Suppl 1:S17–9.

    Article  Google Scholar 

  26. Hamsten A, de Faire U. Risk factors for coronary artery disease in families of young men with myocardial infarction. Am J Cardiol 1987;59:14–9.

    Article  PubMed  CAS  Google Scholar 

  27. Herrmann SM, Poirier O, Marques-Vidal P, et al. The Leu33/Pro polymorphism (PIA1/PIA2) of the glycoprotein IIIa (GPIIIa) receptor is not related to myocardial infarction in the ECTIM Study. Etude Cas-Temoins de l'Infarctus du Myocarde. Thromb Haemost 1997;77:1179–81.

    PubMed  CAS  Google Scholar 

  28. Hibi K, Ishigami T, Tamura K, et al. Endothelial nitric oxide synthase gene polymorphism and acute myocardial infarction. Hypertension 1998;32:521–6.

    PubMed  CAS  Google Scholar 

  29. Hingorani AD, Liang CF, Fatibene J, et al. A common variant of the endothelial nitric oxide synthase (Glu298→Asp) is a major risk factor for coronary artery disease in the UK. Circulation 1999; 100:1515–20.

    PubMed  CAS  Google Scholar 

  30. Hubacek JA, Pit'ha J, Skodova Z, et al. C(−260)→T polymorphism in the promoter of the CD14 monocyte receptor gene as a risk factor for myocardial infarction. Circulation 1999;99:3218–20.

    PubMed  CAS  Google Scholar 

  31. Iacoviello L. Polymorphisms of interleukin-1ß gene and risk of premature myocardial infarction. Circulation 1999;100:1–819.

    Google Scholar 

  32. Illingworth DR. New risk factors for coronary heart disease. Am J Med 1999;107:19S-21S.

    Article  PubMed  CAS  Google Scholar 

  33. Inoue N, Kawashima S, Kanazawa K, et al. Polymorphism of the NADH/NADPH oxidase p22 phox gene in patients with coronary artery disease. Circulation 1998;97:135–7.

    PubMed  CAS  Google Scholar 

  34. Kastrati A, Schomig A, Seyfarth M, et al. PIA polymorphism of platelet glycoprotein IIIa and risk of restenosis after coronary stent placement. Circulation 1999;99:1005–10.

    PubMed  CAS  Google Scholar 

  35. Kostner GM, Avogaro P, Cazzolato G, et al. Lipoprotein Lp(a) and the risk for myocardial infarction. Atherosclerosis 1981;38:51–61.

    Article  PubMed  CAS  Google Scholar 

  36. Kraft HG, Lingenhel A, Kochl S, et al. Apolipoprotein(a) kringle IV repeat number predicts risk for coronary heart disease. Arterioscler Thromb Vasc Biol 1996;16:713–9.

    PubMed  CAS  Google Scholar 

  37. Lauer RM. A family history of risk factors and cardiovascular diseases [editorial]. Circulation 1991;84:1445–6.

    PubMed  CAS  Google Scholar 

  38. Libby P, Ridker PM. Novel inflammatory markers of coronary risk: theory versus practice [editorial] Circulation 1999;100:1148–50.

    PubMed  CAS  Google Scholar 

  39. Lindpaintner K, Pfeffer MA, Kreutz R, et al. A prospective evaluation of an angiotensin-converting-enzyme gene polymorphism and the risk of ischemic heart disease. N Engl J Med 1995;332:706–11.

    Article  PubMed  CAS  Google Scholar 

  40. Ma J, Hennekens CH, Ridker PM, et al. A prospective study of fibrinogen and risk of myocardial infarction in the Physicians' Health Study. J Am Coll Cardiol 1999;33:1347–52.

    Article  PubMed  CAS  Google Scholar 

  41. Ma J, Stampfer MJ, Hennekens CH, et al. Methylenetetrahydrofolate reductase polymorphism, plasma folate, homocysteine, and risk of myocardial infarction in US physicians. Circulation 1996; 94:2410–6.

    PubMed  CAS  Google Scholar 

  42. Malinow MR, Bostom AG, Krauss RM. Homocyst(e)ine, diet, and cardiovascular diseases: a statement for healthcare professionals from the Nutrition Committee, American Heart Association. Circulation 1999;99:178–82.

    PubMed  CAS  Google Scholar 

  43. Morita H, Taguchi J, Kurihara H, et al. Gene polymorphism of 5, 10-methylenetetrahydrofolate reductase as a coronary risk factor. J Cardiol 1997;29:309–15.

    Article  PubMed  CAS  Google Scholar 

  44. Myers RH, Kiely DK, Cupples LA, et al. Parental history is an independent risk factor for coronary artery disease: the Framingham Study. Am Heart J 1990;120:963–9.

    Article  PubMed  CAS  Google Scholar 

  45. Nurden AT. Platelet glycoprotein IIIa polymorphism and coronary thrombosis. Lancet 1997;350:1189–91.

    Article  PubMed  CAS  Google Scholar 

  46. Ortlepp JR, Klues HG, Hanrath P. Polymorphisms — genetic risk factors for coronary heart disease? Dtsch Med Wochenschr 1999; 124:600–8.

    Article  PubMed  CAS  Google Scholar 

  47. Pay S, Ozcan N, Tokgozoglu SL. Elevated Lp(a) is the most frequent familial lipoprotein disorder leading to premature myocardial infarction in a country with low cholesterol levels. Int J Cardiol 1997;60:301–5.

    Article  PubMed  CAS  Google Scholar 

  48. Perombelon YF, Soutar AK, Knight BL. Variation in lipoprotein(a) concentration associated with different apolipoprotein(a) alleles. J Clin Invest 1994;93:1481–92.

    Article  PubMed  CAS  Google Scholar 

  49. Redondo M, Watzke HH, Stucki B, et al. Coagulation factors II, V, VII, and X, prothrombin gene 20210G→A transition, and factor V Leiden in coronary artery disease: high factor V clotting activity is an independent risk factor for myocardial infarction. Arterioscler Thromb Vasc Biol 1999;19:1020–5.

    PubMed  CAS  Google Scholar 

  50. Ribichini F, Steffenino G, Dellavalle A, et al. Plasma activity and insertion/deletion polymorphism of angiotensin I-converting enzyme: a major risk factor and a marker of risk for coronary stent restenosis. Circulation 1998;97:147–54.

    PubMed  CAS  Google Scholar 

  51. Ridker PM, Hennekens CH, Schmitz C, et al. PIA1/A2 polymorphism of platelet glycoprotein IIIa and risks of myocardial infarction, stroke, and venous thrombosis. Lancet 1997;349:385–8.

    Article  PubMed  CAS  Google Scholar 

  52. Ridker PM, Hennekens CH, Stampfer MJ. A prospective study of lipoprotein(a) and the risk of myocardial infarction. JAMA 1993;270:2195–9.

    Article  PubMed  CAS  Google Scholar 

  53. Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med 1999;340:115–26.

    Article  PubMed  CAS  Google Scholar 

  54. Ross R. Atherosclerosis is an inflammatory disease. Am Heart J 1999;138:419–20.

    Article  Google Scholar 

  55. Samani NJ, Thompson JR, O'Toole L, et al. A meta-analysis of the association of the deletion allele of the angiotensin-converting enzyme gene with myocardial infarction. Circulation 1996;94:708–12.

    PubMed  CAS  Google Scholar 

  56. Schachinger V, Britten M, Zeiher AM. Impaired epicardial coronary vasoreactivity predicts for adverse cardiovascular events during long-term follow-up. Circulation 1999;100:1–54.

    Google Scholar 

  57. Schachinger V, Britten MB, Elsner M, et al. A positive family history of premature coronary artery disease is associated with impaired endothelium-dependent coronary blood flow regulation. Circulation 1999;100:1502–8.

    PubMed  CAS  Google Scholar 

  58. Schachinger V, Halle M, Minners J, et al. Lipoprotein(a) selectively impairs receptor-mediated endothelial vasodilator function of the human coronary circulation. J Am Coll Cardiol 1997;30:927–34.

    Article  PubMed  CAS  Google Scholar 

  59. Schildkraut JM, Myers RH, Cupples LA, et al. Coronary risk associated with age and sex of parental heart disease in the Framingham Study. Am J Cardiol 1989;64:555–9.

    Article  PubMed  CAS  Google Scholar 

  60. Schmitz C, Lindpaintner K, Verhoef P, et al. Genetic polymorphism of methylenetetrahydrofolate reductase and myocardial infarction. A case-control study. Circulation 1996;94:1812–4.

    PubMed  CAS  Google Scholar 

  61. Seed M, Hoppichler F, Reaveley D, et al. Relation of serum lipoprotein(a) concentration and apolipoprotein(a) phenotype to coronary heart disease in patients with familial hypercholesterolemia. N Engl J Med 1990;322:1494–9.

    PubMed  CAS  Google Scholar 

  62. Siffert W, Rosskopf D, Siffert G, et al. Association of a human G-protein beta3 subunit variant with hypertension. Nat Genet 1998;18:45–8.

    Article  PubMed  CAS  Google Scholar 

  63. Soutar AK. Update on low density lipoprotein receptor mutations. Curr Opin Lipidol 1998;9:141–7.

    Article  PubMed  CAS  Google Scholar 

  64. Soampfer MJ, Sacks FM, Salvini S, et al. A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction. N Engl J Med 1991;325:373–81.

    Article  Google Scholar 

  65. Superko HR. Did grandma give you heart disease? The new battle against coronary artery disease. Am J Cardiol 1998;82:34Q-46Q.

    Article  PubMed  CAS  Google Scholar 

  66. Thiery J, Teupser D. Genetic factors in the development of atherosclerosis. Z Kardiol 1998;87:777–88.

    Article  PubMed  CAS  Google Scholar 

  67. Tiret L, Bonnardeaux A, Poirier O, et al. Synergistic effects of angiotensin-converting enzyme and angiotensin-II-type 1 receptor gene polymorphisms on risk of myocardial infarction. Lancet 1994;344:910–3.

    Article  PubMed  CAS  Google Scholar 

  68. Tsai MY, Welge BG, Hanson NQ, et al. Genetic causes of mild hyperhomocysteinemia in patients with premature occlusive coronary artery diseases. Atherosclerosis 1999;143:163–70.

    Article  PubMed  CAS  Google Scholar 

  69. Unkelbach K, Gardemann A, Kostrzewa M, et al. A new promoter polymorphism in the gene of lipopolysaccharide receptor CD14 is associated with expired myocardial infarction in patients with low atherosclerotic risk profile. Arterioscler Thromb Vasc Biol 1999;19:932–8.

    PubMed  CAS  Google Scholar 

  70. van Bockxmeer FM, Mamotte CD, Gibbons FA, et al. Angiotensinconverting enzyme and apolipoprotein E genotypes and restenosis after coronary angioplasty. Circulation 1995;92:2066–71.

    PubMed  Google Scholar 

  71. Walter DH, Mach S, Auch-Schwelk W, et al. Statin therapy abrogates increased restenosis rates following coronary stent implantation in carriers of the glycoprotein IIb/IIIa receptor polymorphism PIA2. Circulation 1999;100:1–647.

    Google Scholar 

  72. Walter DH, Schachinger V, Elsner M, et al. Polymorphism of angiotensin I-converting enzyme and risk of coronary stent restenosis. Eur Heart J 1998;19:Suppl:394.

    Google Scholar 

  73. Walter DH, Schachinger V, Elsner M, et al. Platelet glycoprotein IIIa polymorphisms and risk of coronary stent thrombosis. Lancet 1997;350:1217–9.

    Article  PubMed  CAS  Google Scholar 

  74. Walter DH, Schachinger V, Elsner M, et al. Statin therapy counteracts the deleterious effects of increased oxidative stress on atherosclerotic disease progression. Circulation 1999;100:1–647.

    Google Scholar 

  75. Wang XL, Sim AS, Badenhop RF, et al. A smoking-dependent risk of coronary artery disease associated with a polymorphism of the endothelial nitric oxide synthase gene. Nat Med 1996;2:41–5.

    Article  PubMed  CAS  Google Scholar 

  76. Weiss EJ, Bray PF, Tayback M, et al. A polymorphism of a platelet glycoprotein receptor as an inherited risk factor for coronary thrombosis. N Engl J Med 1996;334:1090–4.

    Article  PubMed  CAS  Google Scholar 

  77. Wilson PW, D'Agostino RB, Levy D, et al. Prediction of coronary heart disease using risk factor categories. Circulation 1998;97:1837–47.

    PubMed  CAS  Google Scholar 

  78. Zeiher AM. Endothelial vasodilator dysfunction: pathogenetic link to myocardial ischaemia or epiphenomenon? Lancet 1996; 348:Suppl 1:510–2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk H. Walter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walter, D.H., Zeiher, A.M. Genetische Risikofaktoren für den Myokardinfarkt. Herz 25, 7–14 (2000). https://doi.org/10.1007/BF03044119

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03044119

Schlüsselwörter

Key Words

Navigation