Skip to main content
Log in

Time-course of changes in pancreatic size and enzyme composition in rats during starvation

  • Published:
International journal of pancreatology Aims and scope Submit manuscript

Summary

The effect of starvation for 3, 5, or 7 d on body weight, fat stores, pancreatic weight, and enzyme composition was studied in 300 g rats and was compared with a. 3-d fast in 200 g rats. In the 300 g animals, fasting led to a gradual hypotrophy of the pancreas with a marked, continuous decrease in amylase content. Pancreatic lipase, trypsinogen, chymotrypsinogen, proelastase, and secretory trypsin inhibitor contents increased temporarily, but by d 7, they declined to about the initial values. This decline in enzyme levels coincided with the exhaustion of fat stores. The decrease in amylase content could be related to decreases in circulating insulin levels, whereas the temporary increase in lipase content may be owing to changes in plasma free fatty acid concentrations. In 200 g rats, starvation for 3 d led to exhaustion of fat stores that was accompanied by greater losses of pancreatic weight, protein, and amylase contents. In addition, the levels of trypsinogen and chymotrypsinogen decreased and lipase was unchanged. These findings indicate that during starvation, changes in pancreatic secretory enzymes are time-dependent and vary with the age, body weight, and/or adipose tissue mass of the rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Webster PD, Singh M, Tucker PC, and Black O. Effect of fasting and feeding on the pancreas. Gastroenterology 1962; 62: 600–605.

    Google Scholar 

  2. Mainz DL, Parks NM, and Webster PD. Effect of fasting and refeeding on pancreatic DNA synthesis and content. Proc Soc Exp Biol Med 1977; 156: 340–344.

    PubMed  CAS  Google Scholar 

  3. Morisset JA and Webster PD. Effects of fasting and feeding on protein synthesis by the rat pancreas. J Clin Invest 1972; 51: 1–8.

    Article  PubMed  CAS  Google Scholar 

  4. Fölsch UR, Dreessen UW, Talaulicar M, Willms B, and Creutzfeldt W. Effect of long-term fasting of obese patients on pancreatic exocrine function, gastrointestinal hormones and bicarbonate concentration. Z Gastroenterol 1984; 22: 357–364.

    PubMed  Google Scholar 

  5. Deschodt-Lanckman M, Robberecht P, Camus J, and Christophe J. Short-term adaptation of pancreatic hydrolases to nutritional and physiological stimuli in adult rats. Biochimie 1971; 53: 789–796.

    Article  PubMed  CAS  Google Scholar 

  6. Lee PC, Brooks S, and Lebenthal E. Effect of fasting and refeeding on pancreatic enzymes and secretagogue responsiveness in rats. Am J Physiol 1982; 242: G215-G221.

    PubMed  CAS  Google Scholar 

  7. Viera-Matos AN and Tenenhouse A. The effect of fasting on the in vitro synthesis of amylase in rat exocrine pancreas. Can J Physiol Pharmacol 1977; 55: 90–97.

    Google Scholar 

  8. Bazin R, Lavau M, and Herzog J. Pancreatic lipase and ketogenic conditions. Biomedicine 1978; 28: 160–165.

    PubMed  CAS  Google Scholar 

  9. StöckmannF and Söling HD. Regulation of biosynthesis of trypsinogen and chymotrypsinogen by nutritional and hormonal factors in the rat. Eur J Clin Invest 1981; 11: 121–132.

    Article  PubMed  Google Scholar 

  10. Goodman MN and Ruderman NB. Starvation in the rat. I. Effect of age and obesity on organ weights, RNA, DNA, and protein. Am J Physiol 1980; 239: E269-E276.

    PubMed  CAS  Google Scholar 

  11. Goodman MN, Reed Larsen P, Kaplan MM, Aoki TT, Young VR, and Ruderman NB. Starvation in the rat. II. Effect of age and obesity on protein sparing and fuel metabolism. Am J Physiol 1980; 239: E277-E286.

    PubMed  CAS  Google Scholar 

  12. Solomon TE. Regulation of exocrine pancreatic cell proliferation and enzyme synthesis. Johnson LR, Ed. Physiology of the Gastrointestinal Tract, Raven, New York, 1981; 873–892.

    Google Scholar 

  13. Peckman SC, Entenman C, and Carroll HW. The influence of a hypercaloric diet on gross body and adipose tissue composition in the rat. J Nutr 1962; 77: 187–197.

    Google Scholar 

  14. Schneider WC. Determination of nucleic acids in tissues by pentose analysis. Methods Enzymol 1957; 3: 680–684.

    Article  Google Scholar 

  15. Giles KW and Myers A. An improved diphenylamine method for the estimation of deoxyribonucleic acid. Nature (London) 1965; 206: 93.

    Article  CAS  Google Scholar 

  16. Fritz H, Trautschold I, and Werle E. Protease inhibitors. Bergmeyer HU, Ed. Methods of Enzymatic Analysis, vol. 2, 2nd edition, Verlag Chemie, Weinheim, Academic, New York 1974; 1064–1080.

    Google Scholar 

  17. Ceska M, Brown B, and Birath K. A new rapid method for the clinical determination of alpha-amylase activities in human serum and urine. Optimal conditions. Clin Chim Acta 1969; 26: 437–444.

    Article  PubMed  CAS  Google Scholar 

  18. HoneggerJ and Hadorn B. The determination of lipase activity in human duodenal juice. Biol Gastroenterol 1973; 6: 217–223.

    CAS  Google Scholar 

  19. Solomon TE, Petersen H, Elashoff J, and Grossman MT. Interaction of caerulein and secretin on pancreatic size and composition in rat. Am J Physiol 1978; 235: E714-E719.

    PubMed  CAS  Google Scholar 

  20. Dagorn JC. Nonparallel enzyme secretion from rat pancreas: in vivo studies. J Physiol (London) 1978; 280: 435–448.

    CAS  Google Scholar 

  21. Erlanger BF, Kokowsky W, and Cohen W. The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 1961; 95: 271–278.

    Article  PubMed  CAS  Google Scholar 

  22. Bundy HF. Chymotrypsin-catalyzed hydrolysis of N-acetyl- and N-benzoyl-L-tyrosine p-nitroanilides. Arch Biochem Biophys 1963; 102: 416–422.

    Article  PubMed  CAS  Google Scholar 

  23. Bieth J, Spiess B, and Wermuth CG. The synthesis and analytical use of a highly sensitive and convenient substrate of elastase. Biochem Med 1974; 11: 350–357.

    Article  PubMed  CAS  Google Scholar 

  24. Goa J. Micro biuret method for protein determination; determination of total protein in cerebrospinal fluid. Scand J Clin Lab Invest 1953; 5: 218–222.

    Article  PubMed  CAS  Google Scholar 

  25. HyvärinenA and Nikkilä EA. Specific determination of blood glucose with o-toluidine. Clin Chim Acta 1962; 7: 140–144.

    Article  PubMed  Google Scholar 

  26. Novak M. Colorimetric ultramicro method for the determination of free fatty acids. J Lipid Res 1965; 6: 431–433.

    PubMed  CAS  Google Scholar 

  27. Grimm H. Analysis of variance. Delaunois AL, Ed. Biostatistics in Pharmacology, vol. 2, Pergamon Press, Oxford, 1973; 675–716.

    Google Scholar 

  28. Palla JC, Ben Abdeljlil A, and Desnuelle P. Action de l’insuline sur la biosynthese de l’amylase et de quelques autres enzymes du pancreas de rat. Biochim Biophys Acta 1968; 158: 25–35.

    PubMed  CAS  Google Scholar 

  29. Lavau M, Bazin R, and Herzog J. Comparative effects of oral and parenteral feeding on pancreatic enzymes in the rat. J Nutr 1974; 104: 1432–1437.

    PubMed  CAS  Google Scholar 

  30. Korc M, Owerbach D, Quinto C, and Rutter WJ. Pancreatic islet-acinar cell interaction: amylase messenger RNA levels are determined by insulin. Science 1981; 213: 351–353.

    Article  PubMed  CAS  Google Scholar 

  31. Goldfine ID and Williams JA. Receptors for insulin and CCK in the acinar pancreas: relationship to hormone action. Int Rev Cytol 1983; 85: 1–38.

    Article  PubMed  CAS  Google Scholar 

  32. BazinR and Lavau M. Diet composition and insulin effect on amylase to lipase ratio in pancreas of diabetic rats. Digestion 1979; 19: 386–391.

    PubMed  CAS  Google Scholar 

  33. Mlekusch W, Paletta B, Truppe W, Paschke E, and Grimus R. Plasma concentrations of glucose, corticosterone, glucagon and insulin and liver content of metabolic substrates and enzymes during starvation and additional hypoxia in the rat. Horm Metab Res 1981; 13: 612–614.

    Article  PubMed  CAS  Google Scholar 

  34. Danielsson A. Effects of nutritional state and administration of glucose, glibenclamide or diazoxide on the storage of amylase in mouse pancreas. Digestion 1974; 10: 150–161.

    PubMed  CAS  Google Scholar 

  35. Saudek CD and Felig P. The metabolic events of starvation. Am J Med 1976; 60: 117- 126.

    Article  PubMed  CAS  Google Scholar 

  36. Parilla R. Flux of metabolic fuels during starvation in the rat. Pflügers Arch 1978; 374: 3–7.

    Article  Google Scholar 

  37. Schick J, Kern H, and Scheele G. Hormonal stimulation in the exocrine pancreas results in coordinate and anticoordinate regulation of protein synthesis. J Cell Biol 1984; 99: 1569–1574.

    Article  PubMed  CAS  Google Scholar 

  38. Liddle RA, Goldfine ID, and Williams JA. Bioassay of plasma cholecystokinin in rats: effects of food, trypsin inhibitor, and alcohol. Gastroenterology 1984; 87: 542–549.

    PubMed  CAS  Google Scholar 

  39. Schick J, Verspohl R, Kern H, and Scheele G. Two distinct adaptive responses in the synthesis of exocrine pancreatic enzymes to inverse changes in protein and carbohydrate in the diet. Am J Physiol 1984; 247: 6611–6616.

    Google Scholar 

  40. Marks WH and Ohlsson K. Isolation and partial characterization of the pancreatic secretory trypsin inhibitor in the rat. Biochim Biophys Acta 1982; 717: 91–97.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, I., Pap, Á. & Varró, V. Time-course of changes in pancreatic size and enzyme composition in rats during starvation. Int J Pancreatol 5, 35–45 (1989). https://doi.org/10.1007/BF02925696

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02925696

Key Words

Navigation