Skip to main content
Log in

Kinetics of fatty acid binding ability of glycated human serum albumin

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Kinetics of fatty acid binding ability of glycated human serum albumin (HSA) were investigated by fluorescent displacement technique with 1-anilino-8-naphtharene sulphonic acid (ANS method), and photometric detection of nonesterified-fatty-acid (NEFA method). Changing of binding affinities of glycated HSA toward oleic acid, linoleic acid, lauric acid, and caproic acid, were not observed by the ANS method. However, decreases of binding capacities after 55 days glycation were confirmed by the NEFA method in comparison to control HSA. The decrease in binding affinities was: oleic acid (84%), linoleic acid (84%), lauric acid (87%), and caproic acid (90%), respectively. The decreases were consistent with decrease of the intact lysine residues in glycated HSA. The present observation indicates that HSA promptly loses its binding ability to fatty acid as soon as the lysine residues at fatty acid binding sites are glycated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arai K, Maguchi S, Fujii S, Ishibashi H, Oikawa K and Taniguchi N 1987 Glycation and inactivation of human Cu-Zn-superoxide dismutase. Identification of thein vitro glycated sites;J. Biol. Chem. 262 16969–16972

    CAS  PubMed  Google Scholar 

  • Ashbrook J D, Spector A A, Santos E C and Fletcher J E 1975 Long chain fatty acid binding to human plasma albumin;J. Biol. Chem. 250 2333–2338

    CAS  PubMed  Google Scholar 

  • Bailey A J, Robins S P and Tanner M J 1976 Reducible components in the proteins of human erythrocyte membrane;Biochim. Biophys. Acta 434 51–57

    Article  CAS  Google Scholar 

  • Bhattacharya A A, Grune T and Curry S 2000 Crystallographic analysis reveals common momdes of binding of medium and long-chain fatty acid to human serum albumin;J. Mol. Biol. 303 721–732

    Article  CAS  Google Scholar 

  • Bidlingmeyer B A, Cohen S A and Tarvin T L 1984 Rapid analysis of amino acids using pre-column derivatization;J. Chromatogr. 336 93–104

    Article  CAS  Google Scholar 

  • Brownlee M and Cerami A 1981 The biochemistry of the complications of diabetes mellitus;Annu. Rev. Biochem. 50 385–432

    Article  CAS  Google Scholar 

  • Brownlee M, Cerami A and Vlassara H 1988 Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications;N. Engl. J. Med. 318 1315–1321

    Article  CAS  Google Scholar 

  • Chavez J A, Holland W L, Bar J, Sandhoff K and Summers S A 2005 Acid ceramidase overexpression prevents the inhibitory effects of saturated fatty acids on insulin signaling;J. Biol. Chem. 280 20148–20153

    Article  CAS  Google Scholar 

  • Chen R F 1967 Removal of fatty acids from serum albumin by charcoal treatment;J. Biol. Chem. 242 173–181

    CAS  PubMed  Google Scholar 

  • Duncombe W G 1964 The colorimetric micro-determination of non-esterified fatty acids in plasma;Clin. Chim. Acta 9 122–125

    Article  CAS  Google Scholar 

  • Figge J, Rossing T H and Fencl V 1991 The role of serum proteins in acid-base equilibria;J. Lab. Clin. Med. 117 453–467

    CAS  PubMed  Google Scholar 

  • Garlick R L and Mazer J S 1983 The principal site of nonenzymatic glycosylation of human serum albumin;J. Biol. Chem. 256 6142–6146

    Google Scholar 

  • Iberg N and Flückiger R 1986 Nonenzymatic glycosylation of albuminin vivo. Identification of multiple glycosylated sites;J. Biol. Chem. 261 13542–13545

    CAS  PubMed  Google Scholar 

  • Kashyap S R, Belfort R, Berria R, Suraamornkul S, Pratipranawatr T, Finlayson J, Barrentine A, Bajaj M, Mandarino L, DeFronzo R and Cusi K 2004 Discordant effects of a chronic physiological increase in plasma FFA on insulin signaling in healthy subjects with or without a family history of type 2 diabetes;Am. J. Physiol. Endocrinol. Metab. 287 537–546

    Article  Google Scholar 

  • Lee I Y and McMenamy R H 1980 Location of the medium chain fatty acid site on human serum albumin. Residues involved and relationship to the indole site;J. Biol. Chem. 255 6121–6127

    CAS  PubMed  Google Scholar 

  • Lopaschuk G D 2002 Metabolic abnormalities in the diabetic heart;Heart Fail Rev. 7 149–159

    Article  CAS  Google Scholar 

  • Lyons T J, Silvestri G, Dunn J A, Dyer D G and Baynes J W 1991 Role of glycation in modification of lens crystallins in diabetic and nondiabetic senile cataracts;Diabetes 40 1010–1015

    Article  CAS  Google Scholar 

  • McGarry J D 2002 Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes;Diabetes 51 7–18

    Article  CAS  Google Scholar 

  • Murtiashaw M H and Winterhalter K H 1986 Non-enzymatic glycation of human albumin does not alter its palmitate binding;Diabetologia 29 366–370

    Article  CAS  Google Scholar 

  • Peters T Jr 1985 Serum albumin;Adv. Protein Chem. 37 161–245

    Article  CAS  Google Scholar 

  • Reed R G 1986 Location of long chain fatty acid-binding sites of bovine serum albumin by affinity labeling;J. Biol. Chem. 261 15619–15624

    CAS  PubMed  Google Scholar 

  • Shaklai N, Garlick R L and Bunn H F 1984 Nonenzymatic glycosylation of human serum albumin alters its conformation and function;J. Biol. Chem. 259 3812–3817

    CAS  PubMed  Google Scholar 

  • Shapiro R, McManus M J, Zalut C and Bunn H F 1980 Sites of nonenzymatic glycosylation of human hemoglobin A;J. Biol. Chem. 255 3120–3127

    CAS  PubMed  Google Scholar 

  • Spector A A and Hoak J C 1969 An improved method for the addition of long-chain free fatty acid to protein solutions;Anal. Biochem. 32 297–302

    Article  CAS  Google Scholar 

  • Takikawa H and Kaplowitz N 1986 Binding of bile acids, oleic acid, and organic anions by rat and human hepatic Z protein;Arch. Biochem. Biophys. 251 385–392

    Article  CAS  Google Scholar 

  • Unger R H 2002 Lipotoxic diseases;Annu. Rev. Med. 53 319–336

    Article  CAS  Google Scholar 

  • Waldmann T A 1977 Albumin catabolism; inAlbumin structure, function and uses (eds) V M Rosenoer, M Rats and M A Rothschild (Oxford: Pergamon) pp 255–273

    Chapter  Google Scholar 

  • Watkins N G, Thrope S R and Baynes J W 1985 Glycation of amino groups in protein. Studies on the specificity of modification of RNase by glucose;J. Biol. Chem. 260 10629–10636

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Yamazaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamazaki, E., Inagaki, M., Kurita, O. et al. Kinetics of fatty acid binding ability of glycated human serum albumin. J. Biosci. 30, 475–481 (2005). https://doi.org/10.1007/BF02703721

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703721

Keywords

Navigation