Skip to main content
Log in

Modeling tensile deformation of dual-phase steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

An analytical model has been developed which can describe the tensile deformation behavior of dualphase steel containing retained austenite which transforms to martensite during deformation. The model takes into account the internal back stresses created in the material as a result of the deformation. The influence of various metallurgical factors, such as the amounts of the secondary phases (martensite and retained austenite), strength ratio of the phases, work hardening coefficients, and the stability of retained austenite with respect to the strain-induced transformation, was analyzed. The strongest influence on both strength and ductility was found to result from a large work hardening coefficient of the martensite. Increasing the stability of retained austenite to strain-induced transformation improved the ductility remarkably. The model developed was used to predict the tensile deformation behavior of a commercial dual phase steel fairly accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. S. Rashid:Ann. Rev. Mater. Sci., 1981, vol. 11, pp. 245–66.

    Article  CAS  Google Scholar 

  2. S.T. Mileiko:J. Mater. Sci., 1969, vol. 4, pp. 974–77.

    Article  CAS  Google Scholar 

  3. R. G. Davies:Metall. Trans. A, 1978, vol. 9A, pp. 41–52.

    CAS  Google Scholar 

  4. B. Karlson and B.O. Sundstrom:Mater. Sci. Eng., 1974, vol. 16, pp. 161–68.

    Article  Google Scholar 

  5. Y. Tomota, K. Kuroki, T. Mori, and I. Tamura:Mater. Sci. Eng., 1976, vol. 24, pp. 85–94.

    Article  CAS  Google Scholar 

  6. P. Uggowitzer and H. P. Stüwe:Z. Metallkunde, 1982, vol. 73, no. 5, pp. 277–85.

    CAS  Google Scholar 

  7. N.C. Goel, S. Sangal, and K. Tangri:Metall. Trans. A, 1985, vol. 16A, pp. 2013–21.

    CAS  Google Scholar 

  8. S. Sangal, N.C. Goel, and K. Tangri:Metall. Trans. A, 1985, vol. 16A, pp. 2023–29.

    CAS  Google Scholar 

  9. A. Goel, R. K. Ray, and G. S. Murty:Scripta Metall., 1983, vol. 17, pp. 375–80.

    Article  CAS  Google Scholar 

  10. A.M. Sarosiek and W. S. Owen:Scripta Metall., 1983, vol. 17, pp. 227–31.

    Article  Google Scholar 

  11. A. Rizk and D. L. Bourell:Scripta Metall., 1982, vol. 16, pp. 1321–24.

    Article  CAS  Google Scholar 

  12. A. Sarosiek: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1982.

  13. C. Kim, M.S. Rashid, and W. J. Riffe: SAE Tech. Paper 840011, 1984.

  14. M.S. Rashid:SAE Trans., 1976, vol. 85, no. 2, pp. 938–49.

    Google Scholar 

  15. M.S. Rashid:SAE Trans., 1977, vol. 86, no. 2, pp. 935–46.

    Google Scholar 

  16. T. Furukawa, H. Morikawa, H. Takeuchi, and K. Koyama:Structure and Properties of Dual-Phase Steels, R. A. Kot and J.W. Morris, eds., AIME, New York, NY, 1979, pp. 281–303.

    Google Scholar 

  17. A.K. Sachdev:Acta Metall., 1983, vol. 31, no. 12, pp. 2037–42.

    Article  CAS  Google Scholar 

  18. G. B. Olson and M. Cohen:Metall. Trans. A, 1975, vol. 6A, pp. 791–95.

    CAS  Google Scholar 

  19. C. Kim: in TMS-AIME Conference Proceeding,Processing, Micro- structure and Properties of HSLA Steels, 1988, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, C. Modeling tensile deformation of dual-phase steel. Metall Trans A 19, 1263–1268 (1988). https://doi.org/10.1007/BF02662587

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02662587

Keywords

Navigation