Skip to main content
Log in

Spatiotemporal analysis of complex signals: Theory and applications

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a space-time description of regular and complex phenomena which consists of a decomposition of a spatiotemporal signal into orthogonal temporal modes that we call chronos and orthogonal spatial modes that we call topos. This permits the introduction of several characteristics of the signal, three characteristic energies and entropies (one temporal, one spatial, and one global), and a characteristic dimension. Although the technique is general, we concentrate on its applications to hydrodynamic problems, specifically the transition to turbulence. We consider two cases of application: a coupled map lattice as a dynamical system model for spatiotemporal complexity and the open flow instability on a rotating disk. In the latter, we show a direct relation between the global entropy and the different instabilities that the flow undergoes as Reynolds number increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. J. Adrian,Phys. Fluids 22:2065 (1979).

    Google Scholar 

  2. R. J. Adrian,Appl. Opt. 23:1690 (1984).

    Google Scholar 

  3. N. Aubry, M. P. Chauve, and R. Guyonnet, Analysis of a rotating disk flow experiment, Preprint, B. Levich Institute, CCNY of CUNY, New York, New York (1990).

    Google Scholar 

  4. N. Aubry, P. Holmes, J. L. Lumley, and E. Stone,J. Fluid Mech. 192:115 (1988).

    Google Scholar 

  5. N. Aubry and S. Sanghi, inOrganized Structures and Turbulence in Fluid Mechanics, M. Lesieur, ed. (Kluwer Academic, 1989).

  6. V. I. Arnold,Bifurcations and Singularities in Mathematics and Mechanics, Theoretical and Applied Mechanics, P. Germain, M. Piau, and D. Caillerie, eds. (Elsevier, 1989).

  7. A. V. Babin and M. I. Vishic,Uspekhi Mat. Nauk 38:133 (1983) [Russ. Math. Surv. 38:151 (1983)].

    Google Scholar 

  8. L. Batiston, L. Bunimovich, and R. Lima, Robustness of quasi-homogeneous configurations in coupled map lattice, Preprint, Institute for Scientific Interchange, Turin, Italy (1990).

    Google Scholar 

  9. P. Bergé,Nucl. Phys. B 2:247 (1987).

    Google Scholar 

  10. P. Bergé, M. Dubois, P. Manneville, and Y. Pomeau,J. Phys. Lett. (Paris)41:L341 (1980).

    Google Scholar 

  11. R. F. Blackwelder and R. E. Kaplan,J. Fluid Mech. 76:89 (1976).

    Google Scholar 

  12. W. B. Brown, inBoundary Layer and Flow Control, G. V. Lachmann, ed. (Pergamon Press, 1961), p. 913.

  13. L. Bunimovich,Sou. J. Theor. Exp. Phys. 89:4 (1985).

    Google Scholar 

  14. L. Bunimovich, A. Lambert, and R. Lima,J. Stat. Phys. 61 (1990).

  15. L. Bunimovich and Ya. G. Sinai,Nonlinearity 1:491–516 (1988).

    Google Scholar 

  16. B. Cantwell,Annu. Rev. Fluid Mech. 13:453 (1981).

    Google Scholar 

  17. H. Chaté and P. Manneville,C. R. Acad. Sci. 304:609 (1987);Phys. Rev. A 38: 4351 (1988);Physica D 32:409 (1988).

    Google Scholar 

  18. S. Ciliberto, F. Francini, and F. Simonelli,Opt. Commun. 54:251 (1985).

    Google Scholar 

  19. S. Ciliberto and P. Bigazzi,Phys. Rev. Rev. 60:286 (1988).

    Google Scholar 

  20. S. Ciliberto and B. Nicolaenko, Estimating the number of degrees of freedom in spatially extended systems, Preprint, Instituto Nazionale di Ottica, Largo Enrico Fermi 6, 50125 Arcetri-Firenze, Italy (1990).

    Google Scholar 

  21. I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai,Ergodic Theory (Springer, 1980).

  22. J. Dixmier,Les Algèbres d'Opérateurs de l'Espace Hilbertien (Algèbre de von Neumann) (Gauthiers-Villars, 1968).

  23. M. J. Feigenbaum,J. Stat. Phys. 19:25 (1978).

    Google Scholar 

  24. A. Fincham and R. Blackwelder,Bull. Am. Phys. Soc. (42nd Annu. Mtg. Div. Fluid Dynam.)1989:2266.

  25. C. Foias, G. R. Sell, and R. Témam,J. Differential Equations 73:309–353 (1988).

    Google Scholar 

  26. M. N. Glauser, S. J. Leib, and W. K. George,Turbulent Shear Flows 5 (Springer-Verlag, 1987).

  27. B. Gnedenko,The Theory of Probability (MIR, Moscow, 1976).

    Google Scholar 

  28. J. P. Gollub and H. L. Swinney,Phys. Rev. Lett. 35:927 (1975).

    Google Scholar 

  29. P. Grassberger and I. Procaccia,Physica 9D:189 (1983).

    Google Scholar 

  30. N. Gregory, J. T. Stuart, and W. S. Walker,Phil. Trans. 248:155 (1955).

    Google Scholar 

  31. J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer-Verlag, 1983).

  32. J. C. R. Hunt,Trans. Can. Soc. Mech. Eng. 11:21 (1987).

    Google Scholar 

  33. A. K. M. F. Hussain,J. Fluid Mech. 173:303 (1986).

    Google Scholar 

  34. K. Kaneko,Physica 34D:1 (1989).

    Google Scholar 

  35. J. L. Kaplan and J. A. Yorke, inFunctional Differential Equations and Approximations of Fixed Points, H. O. Peitgen and H. O. Walther, eds. (Springer, Berlin, 1979), p. 204.

    Google Scholar 

  36. K. Karhunen,Ann. Acad. Sci. Fenn. Al., Math. Phys. 37:1 (1946).

    Google Scholar 

  37. T. Kato,Perturbation Theory for Linear Operators (Springer-Verlag, 1966).

  38. D. Keller and J. D. Farmer,Physica 23D:842 (1986).

    Google Scholar 

  39. B. Khalighi,Exp. Fluids 7(2):142 (1989).

    Google Scholar 

  40. R. Kobayashi, Y. Kohama, and Ch. Takamadate,Acta Mech. 35:71 (1980).

    Google Scholar 

  41. A. N. Kolmogorov,Dokl. Akad. Nauk SSSR 30:301 (1941).

    Google Scholar 

  42. A. Libchaber, C. Laroche, and S. Fauve,J. Phys. Lett. (Paris)43:L211 (1982).

    Google Scholar 

  43. H. W. Liepmann and R. Narisimha, eds.,Turbulence Management and Relaminarisation (Springer-Verlag, 1987).

  44. M. Loève,Probability Theory (Van Nostrand, 1955).

  45. J. L. Lumley, inAtmosdpheric Turbulence and Radio Wave Propagation, A. M. Yaglom and V4. I. Tatarski, eds. (Nauka, Moscow, 1967), p. 166.

    Google Scholar 

  46. J. L. Lumley,Stochastic Tools in Turbulence (Academic, Press, 1972).

  47. J. L. Lumley, inTransition and Turbulence, R. E. Meyer, ed. (Academic Press, 1981), p. 215.

  48. J. L. Lumley, inWhither Turbulance?, J. L. Lumley, ed. (Springer-Verlag, 1990), p. 49.

  49. M. R. Malik, S. P. Wilkinson, and S. A. Orszag,AIAA J. 19:1131 (1981).

    Google Scholar 

  50. Mallet-Paret,J. Differential Equations 22 (1976).

  51. R. Mañe,Lecture Notes in Mathematics, Vol. 898 (Springer, 1981).

  52. J. Marsden,Butt. AMS 79:537 (1973).

    Google Scholar 

  53. S. E. Newhouse, D. Ruelle, and F. Takens,Commun. Math. Phys. 64:35 (1978).

    Google Scholar 

  54. Y. Pomeau and P. Manneville,Commun. Math. Phys. 101:189 (1980).

    Google Scholar 

  55. Y. Pomeau,Physica D 23:3 (1986).

    Google Scholar 

  56. A. I. Rakhmanov and N. K. Rakhmanova, On one dynamical system with spatial interactions, Preprint, Keldysk Institute for Applied Mathematics, Moscow (1990).

    Google Scholar 

  57. J. D. Rodriguez and L. Sirovich,Physica D 43:77–86 (1990).

    Google Scholar 

  58. A. Roshko,AIAA J. 14:1344 (1976).

    Google Scholar 

  59. D. Ruelle,Chaotic Evolution and Strange Attractors (Cambridge University Press, 1989).

  60. D. Ruelle and F. Takens,Commun. Math. Phys. 20:176 (1971).

    Google Scholar 

  61. L. P. Silnikov,Sov. Math. Dokl. 6:163–166 (1965);Math. USSR Sbornik 6:427–438 (1968),10:91 (1970).

    Google Scholar 

  62. L. Sirovich,Q. Appl. Math. 45:561–590 (1987).

    Google Scholar 

  63. L. Sirovich, inProceedings 1989 Newport Conference on Turbulence (Springer-Verlag).

  64. L. Sirovich and A. E. Deane, A computational study of Rayleigh-Bénard convection. Part2: Dimension considerations, Preprint, Brown University Center for Fluid Mechanics, Providence, Rhode Island.

  65. C. R. Smith and R. D. Paxton,Exp. Fluids 1:43 (1990).

    Google Scholar 

  66. N. H. Smith, NACA Tech. Note No. 1227 (1947).

  67. F. Takens,Lecture Notes in Mathematics (Springer-Verlag, 1981), p. 898.

  68. R. Témam,Infinite Dimensional Dynamical Systems in Mechanics and Physics (Springer-Verlag, New York, 1988).

    Google Scholar 

  69. H. Tennekes and J. L. Lumley,A First Course in Turbulence (MIT Press).

  70. I. Waller and R. Kapral,Phys. Rev. 30A:2047 (1984).

    Google Scholar 

  71. J. M. Wallace and F. Hussain,Appl. Mech. Rev. 43:S203 (1990).

    Google Scholar 

  72. W. W. Willmarth, inAdvances in Applied Mechanics 15 (Academic Press, 1975), p. 159.

  73. I. Yamashita and M. Takematsu,Rep. Inst. Appl. Mech. Hyushu Univ. (Japan)22(69) (1974).

  74. S. Ciliberto and M. Caponeri,Phys. Rev. Lett. 1990:2775–2778.

  75. S. Ciliberto, inProceedings Les Houches, Complexity and Dynamics (1990), to appear.

  76. A. E. Deane, I. G. Kevrekidis, G. E. Karniadakis, and S. A. Orszag, Low dimensional models for complex flows geometry flows: Application to grooved channels and circular cylinders, Preprint (1990).

  77. M. Kirby, D. Armbruster, and W. Güttinger, An approach for the analysis of spatially localized oscillations, inConference Proceedings: Bifurcations and Chaos, Würzburg (to appear).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubry, N., Guyonnet, R. & Lima, R. Spatiotemporal analysis of complex signals: Theory and applications. J Stat Phys 64, 683–739 (1991). https://doi.org/10.1007/BF01048312

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048312

Key words

Navigation