Skip to main content
Log in

Loss of telomeric sites in the chromosomes ofMus musculus domesticus (Rodentia: Muridae) during Robertsonian rearrangements

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Mouse chromosomes possessing multiple Robertsonian rearrangements (Rb chromosomes) have been examined using fluorescencein situ hybridization with the telomeric consensus sequence (TTAGGG)n. No hybridization signals were detected at the primary constriction of Rb chromosomes. This observation leads us to conclude that the formation of Rb chromosomes in the mouse is invariably associated with the loss of telomeric regions. More significantly, a further alteration in regions flanking the primary constrictions was observed after hybridizing with a minor satellite DNA probe to Rb chromosomes. It seems likely that the breakpoints required for a Robertsonian process do not include telomeric sites exclusively but extend to the adjacent pericentromeric regions of the original acrocentric chromosomes. In contrast to previous reports, these observations demonstrate the elimination of substantial amounts of chromosomal DNA during the formation of mouse Rb chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashley T, Ward DC (1993) A ‘hot spot’ of recombination coincides with an interstitial telomeric sequence in the Armenian hamster.Cytogenet Cell Genet 62: 169–171.

    Google Scholar 

  • Baker RJ, Bickham JW (1986) Speciation by monobrachial centric fusions.Proc Natl Acad Sci USA 83: 8245–8248.

    Google Scholar 

  • Belkhir K, Britton-Davidian J, Konig B (1991) De nouvelles populations robertsoniennes de souris (Mus musculus domesticus) au nord des Alpes.Genome 34: 658–660.

    Google Scholar 

  • Blin N, Stafford DW (1976) A general method for isolation of high molecular weight DNA from eukaryotes.Nucleic Acids Res 3: 2303–2308.

    Google Scholar 

  • Broccoli D, Miller OJ, Miller D (1990) Relationship of mouse minor satellite DNA to centromere activity.Cytogenet Cell Genet 54: 182–186.

    Google Scholar 

  • Capanna E (1982) Robertsonian numerical variation in animal speciation:Mus musculus, an emblematic model. In: Barigozzi C, ed.Mechanisms of Speciation. New York: Alan R Liss, pp 155–177.

    Google Scholar 

  • Capanna E, Gropp A, Winking H, Noack G, Civitelli MV (1976) Robertsonian metacentrics in the mouse.Chromosoma 58: 341–353.

    Google Scholar 

  • Carpenter ATC (1987) Gene conversion, recombination nodules, and the initiation of meiotic synapsis.BioEssays 6: 232–236.

    Google Scholar 

  • Comings DE, Avelino E (1972) DNA loss during Robertsonian fusion in studies of the Tobacco mouse.Nature New Biol 237: 199.

    Google Scholar 

  • Comings DE, Okada TA (1970) Whole-mount electron microscopy of the centromeric region of metacentric and telocentric mammalian chromosomes.Cytogenetics 9: 436–449.

    Google Scholar 

  • Eicher EM, Lee BK, Washburn LL, Hale DW, King TR (1992) Telomere-related markers for the pseudoautosomal region of the mouse genome.Proc Natl Acad Sci USA 89: 2160–2164.

    Google Scholar 

  • Elder FFB, Hsu TC (1988) Tandem fusion in the evolution of mammalian chromosomes. In: Daniel A, ed.The Cytogenetics of Mammalian Autosomal Rearrangements. New York: Alan R Liss, pp 481–506.

    Google Scholar 

  • Elliott RW, Yen C-H (1991) DNA variants with telomere probe enable genetic mapping of ends of mouse chromosomes.Mammalian Genome 1: 118–122.

    Google Scholar 

  • Garagna S, Redi CA, Capanna Eet al. (1993) Genome distribution, chromosomal allocation and organization of the major and minor satellite DNAs in 11 species and subspecies of the genusMus.Cytogenet Cell Genet 64: 247–255.

    Google Scholar 

  • Gropp A, Tettenborn U, Lehmann E (1970) Chromosomenvariation vom Robertsonschen Typus bei der TabakmausM. poschiavinus und ihren hybriden mit der laboratoriumsmaus.Cytogenetics 9: 9–23.

    Google Scholar 

  • Gropp A, Winking H, Zech L, Müller HJ (1972) Robertsonian chromosomal variation and identification of metacentric chromosomes in feral mice.Chromosoma 39: 265–288.

    Google Scholar 

  • Guttenbach M, Schmid M (1990) Determination of Y chromosome aneuploidy in human sperm nuclei by nonradioactivein situ hybridization.Am J Hum Genet 46: 553–558.

    Google Scholar 

  • Hastie ND, Allshire RC (1989) Human telomeres: fusion and interstitial sites.Trends Genet 5: 326–331.

    Google Scholar 

  • Holmquist G, Dancis BM (1980) A general model of karyotype evolution.Genetica 52/53: 151–163.

    Google Scholar 

  • Hsu TC, Patton JL (1969) Bone marrow preparations for chromosome studies. In: Benrischke K, ed.Comparative Mammalian Cytogenetics. Berlin: Springer, pp 454–460.

    Google Scholar 

  • Hsu TC, Pathak S, Chen TR (1975) The possibility of latent centromeres and a proposed nomenclature system for total chromosome and whole arm translocations.Cytogenet Cell Genet 15: 41–49.

    Google Scholar 

  • Ijdo JW, Baldini A, Ward DC, Reeders ST, Wells RA (1991) Origin of human chromosome 2: An ancestral telomere-telomere fusion.Proc Natl Acad Sci USA 88: 9051–9055.

    Google Scholar 

  • John B, Freeman M (1975) Causes and consequences of Robertsonian exchange.Chromosoma 52: 123–136.

    Google Scholar 

  • Kipling D, Ackford HE, Taylor BA, Cooke HJ (1991) Mouse minor satellite DNA genetically maps to the centromere and is physically linked to the proximal telomere.Genomics 11: 235–241.

    Google Scholar 

  • Matthew R (1965) Cytogenetic mechanism and speciations of mammals.In vitro 1: 1–11.

    Google Scholar 

  • Meyne J, Ratliff RL, Moyzis RK (1989) Conservation of the human telomere sequence (TTAGGG) n among vertebrates.Proc Natl Acad Sci USA 89: 7049–7053.

    Google Scholar 

  • Meyne J, Baker RJ, Hobart HHet al. (1990) Distribution of non-telomeric sites of the (TTAGGG) n telomeric sequence in vertebrate chromosomes.Chromosoma 99: 3–10.

    Google Scholar 

  • Miller OJ, Miller DA, Tantravahi R, Dev VG (1978) Nucleolus organizer activity and the origin of Robertsonian translocation.Cytogenet Cell Genet 20: 40–50.

    Google Scholar 

  • Moyzis RK, Buckingham JM, Cram LSet al. (1988) A highly conserved repetitive DNA sequence (TTAGGG) n present at the telomeres of human chromosomes.Proc Natl Acad Sci USA 85: 6622–6626.

    Google Scholar 

  • Narayanswami S, Doggett NA, Clark LM, Hildebrand CE, Weier H-U, Hamkalo BA (1992) Cytological and molecular characterization of centromeres inMus domesticus andMus spretus.Mammalian Genome 2: 186–194.

    Google Scholar 

  • Park VM, Gustashaw KM, Wathen TM (1992) The presence of interstitial telomeric sequences in constitutional chromosome abnormalities.Am J Hum Genet 50: 914–923.

    Google Scholar 

  • Pluta AF, Zakian VA (1989) Recombination occurs during telomere formation in yeast.Nature 337: 429–433.

    Google Scholar 

  • Redi CA, Garagna S, Mazzini S, Winking H (1986) Pericentromeric heterochromatin and A-T contents during Robertsonian fusion in the house mouse.Chromosoma 94: 31–35.

    Google Scholar 

  • Redi CA, Garagna G, Zuccotti M (1990) Robertsonian chromosome formation and fixation: the genomic scenario.Biol J Linn Soc 41: 235–255.

    Google Scholar 

  • Reimann N, Rogalla P, Kazmierczak Bet al. (1994) Evidence that metacentric and submetacentric chromosomes in canine tumors can result from telomeric fusions.Cytogenet Cell Genet 67: 81–85.

    Google Scholar 

  • Robertson WRB (1916) Chromosome studies. I. Taxonomic relationships shown in the chromosomes of tettigidae and acrididae: V-shaped chromosomes and their significance in acrididae, locustidae, and gryllidae: chromosomes and variation.J Morphol 27: 179–331.

    Google Scholar 

  • Rossi E, Floridia G, Casali Met al. (1993) Types, stability, and phenotype consequences of chromosome rearrangements leading to interstitial telomeric sequences.J Med Genet 30: 926–931.

    Google Scholar 

  • Seabright M (1971) A rapid banding technique for human chromosomes.Lancet ii: 971–972.

    Google Scholar 

  • Scherthan H (1990) Localization of the repetitive telomeric sequence (TTAGGG) n in two muntjac species and implications for their karyotypic evolution.Cytogenet Cell Genet 53: 115–117.

    Google Scholar 

  • Schmid M, Feichtinger W, Nanda Iet al. (1994) An extraordinary low diploid chromosome number in the reptileGonatodes taniae (Sauria, Gekonidae) J Hered 85: 255–260.

    Google Scholar 

  • Schubert I, Schriever-Schwemmer G, Werner T, Adler I-D (1992) Telomeric signals in Robertsonian fusion and fission chromosomes: implication for the origin of pseudoaneuploidy.Cytogenet Cell Genet 59: 6–9.

    Google Scholar 

  • Starling JA, Maule J, Hastie ND, Allshire RC (1990) Extensive telomere repeat arrays in mouse are hypervariable.Nucleic Acids Res 18: 6881–6888.

    Google Scholar 

  • Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin.Exp Cell Res 75: 304–306.

    Google Scholar 

  • Tucker PK, Lee BK, Lundrigan BL, Eicher EM (1992) Geographic origin of the Y chromosomes in ‘old’ inbred strains of mice.Mammalian Genome 3: 254–261.

    Google Scholar 

  • White MJD (1973)Animal Cytology and Evolution. Cambridge: Cambridge University Press.

    Google Scholar 

  • Winking H, Beatrica D, Bulfield G (1988) Robertsonian karyotype variation in the European house mouse,Mus musculus: survey of present knowledge and new observations.Z Säugetierkunde 53: 148–161.

    Google Scholar 

  • Wong AKC, Rattner JB (1988) Sequence organization and cytological localization of the minor satellite of mouse.Nucleic Acids Res 16: 11645–11661.

    Google Scholar 

  • Wong AKC, Biddle FG, Rattner JB (1990) The chromosomal distribution of the major and minor satellite is not conserved in the genusMus.Chromosoma 99: 190–195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nanda, I., Schneider-Rasp, S., Winking, H. et al. Loss of telomeric sites in the chromosomes ofMus musculus domesticus (Rodentia: Muridae) during Robertsonian rearrangements. Chromosome Res 3, 399–409 (1995). https://doi.org/10.1007/BF00713889

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00713889

Key words

Navigation