Skip to main content
Log in

Anisotropic etching of silicon crystals in KOH solution

Part I Experimental etched shapes and determination of the dissolution slowness surface

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The anisotropic etching behaviour of various crystalline silicon plates in an aqueous KOH solution was studied. Variations of the etch rate with the angle of cut related to singly-rotated plates have been determined and orientation effects in the out-of-roundness profiles related to various {h k 0} sections have been analysed in terms of crystal symmetry. In addition, changes in the surface texture with crystal orientation were systematically investigated. All the experimental results furnished evidence for a dissolution process governed by the crystal orientation. A procedure has been proposed to derive the dissolution slowness surface from experiments starting from a tensorial representation of the anisotropic etching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Sangwal, “Etching of Crystals” (North-Holland, Amsterdam, 1987).

    Google Scholar 

  2. B. A. Irving, in “The Electrochemistry of Semiconductors”, edited by P. J. Holmes (Academic Press, London, 1962) pp. 256–89.

    Google Scholar 

  3. R. B. Heimann, in “Silicon Chemical Etching”, edited by J. Grabmaier (Springer, Berlin, 1982) pp. 197–224.

    Google Scholar 

  4. M. W. Wegner and J. M. Christie, Phys. Chem. Minerals. 9 (1983) 67.

    Article  CAS  Google Scholar 

  5. C. R. Tellier, Surf. Technol. 21 (1984) 83.

    Article  CAS  Google Scholar 

  6. H. C. Gatos and M. C. Lavine, J. Electrochem. Soc. 107 (1960) 433.

    Article  CAS  Google Scholar 

  7. M. Castagliola, C. R. Tellier and J. L. Vaterkowski, J. Mater. Sci. 21 (1986) 3551.

    Article  CAS  Google Scholar 

  8. J. W. Faust, in “The Surface Chemistry of Metals and Semiconductors”, edited by H. C. Gatos (Wiley, New York, 1960) p. 151.

    Google Scholar 

  9. P. J. Holmes, in “The electrochemistry of Semiconductors”, edited by P. J. Holmes (Academic Press, London, 1962) pp. 329–77.

    Google Scholar 

  10. K. E. Petersen, Proc. IEEE 70 (1982) 420.

    Article  CAS  Google Scholar 

  11. G. Delapierre, Sensors and Actuators 17 (1989) 123.

    Article  CAS  Google Scholar 

  12. S. K. Clark and K. D. Wise, IEEE Trans. Electron Devices ED-26 (1979) 1887.

    Article  CAS  Google Scholar 

  13. M. Bao and Y. Wang, Sensors and Actuators 12 (1987) 49.

    Article  CAS  Google Scholar 

  14. K. E. Petersen, IEEE Trans. Electron Devices ED-25 (1978) 1241.

    Article  CAS  Google Scholar 

  15. R. J. Wilfinger, P. H. Bardell and D. S. Chabra, IBM J. Res. Devel. 12 (1968) 113.

    Article  Google Scholar 

  16. G. Kaminsky, J. Vac. Sci. Technol. B3 (1985) 1015.

    Article  Google Scholar 

  17. A. I. SToller, RCA Rev. June (1970) 271.

  18. R. A. Buser and N. F. De Rooj, Sensors and Actuators 17 (1989) 145.

    Article  CAS  Google Scholar 

  19. Y. Linden, L. Tenerz, J. Tiren and B. Hok, 16 (1989) 67.

    Article  CAS  Google Scholar 

  20. K. Yamada, M. Nishihara, R. Kanzawa and R. Kobayashi, 4 (1983) 63.

    Article  Google Scholar 

  21. G. Blasquez, P. Pons and A. Boukabache, 17 (1989) 387.

    Article  Google Scholar 

  22. W. H. Ko, J. Hynecek and S. F. Boettcher, IEEE Trans. Electron Devices ED-26 (1979) 1896.

    Google Scholar 

  23. H. Seidel and L. Csepregi, Sensors and Actuators 4 (1983) 455.

    Article  CAS  Google Scholar 

  24. H. Seidel, L. Cesepregi, A. Heuberger and H. Baumgartel, J. Electrochem. Soc. 137 (1990) 3613.

    Article  Google Scholar 

  25. D. B. Lee, J. Appl. Phys. 40 (1969) 4569.

    Article  CAS  Google Scholar 

  26. K. E. Bean, IEEE Trans. Electron Devices ED-25 (1978) 1185.

    Article  CAS  Google Scholar 

  27. M. J. Declercq, L. Gerzberg and J. M. Meindi, J. Electrochem. Soc. 122 (1975) 545.

    Article  CAS  Google Scholar 

  28. M. M. Abu-Zeid, 134 (1984) 2138.

    Article  Google Scholar 

  29. X. P. Wu and W. H. Ko, Sensors and Actuators 18 (1989) 207.

    Article  CAS  Google Scholar 

  30. Y. Kanda and A. Yasukawa, Sensors and Actuators 2 (1982) 283.

    Article  CAS  Google Scholar 

  31. Y. Kanda, 4 (1983) 199.

    Article  Google Scholar 

  32. Y. Wang, M. Bao and L. Yu, 18 (1989) 221.

    Article  CAS  Google Scholar 

  33. F. C. Frank, in “Growth and Perfection of Crystals”, edited by R. H. Doremus, B. W. Robert and D. Turnbull (Wiley, New York, 1965) p. 411.

    Google Scholar 

  34. F. C. Frank and M. B. Ives, J. Appl. Phys. 31 (1960) 1996.

    Article  CAS  Google Scholar 

  35. D. W. Shaw, J. Electrochem. Soc. 128 (1981) 874.

    Article  CAS  Google Scholar 

  36. D. W. Shaw, J. Crystal Growth 47 (1979) 509.

    Article  CAS  Google Scholar 

  37. C. R. Tellier and J. L. Vaterkowski, J. Mater. Sci. 24 (1989) 1077.

    Article  CAS  Google Scholar 

  38. C. R. Tellier and T. G. Leblois, in “Proceedings of the Third European Time and Frequency Forum, BesanÇon, France, 1989 (Imprimerie Conseil Général du Doubs, BesanÇon, 1989) pp. 246–55.

    Google Scholar 

  39. C. R. Tellier, J. Crystal Growth 100 (1990) 515.

    Article  CAS  Google Scholar 

  40. C. R. Tellier, T. G. Leblois and P. C. Maitre, J. Mater. Sci. 24 (1989) 3029.

    Article  CAS  Google Scholar 

  41. A. Brahim-Bounab, J. Y. Amaudrut, C. R. Tellier, 26 (1991) 5585.

    Article  CAS  Google Scholar 

  42. C. R. Tellier, J. Y. Amaudrut and A. Brahimbounab, 26 (1991) 5595.

    Article  CAS  Google Scholar 

  43. T. Leblois and C. R. Tellier, J. Phys. III 2 (1992) 1259.

    Google Scholar 

  44. A. Brahim-Bounab and C. R. Tellier, in “Proceedings of the 6th European Frequency and Times Forum”, Noordwijk, The Netherlands, March 1992 (European Space Agency, Paris, 1992) pp. 355–60.

    Google Scholar 

  45. C. R. Tellier, T. Leblois, A. Brahim-Bounab and D. Benmessaouda, in “Proceedings of the 1st Japanese-French Congress of Mecatronique”, BesanÇon, France, October 1992 (Imprimerie du Conseil Général du Doubs, BesanÇon, 1992) 6 pp.

    Google Scholar 

  46. C. R. Tellier and F. Jouffroy, J. Mater. Sci. 18 (1983) 3621.

    Article  CAS  Google Scholar 

  47. C. R. Tellier, in “Proceedings of the 39th Annual Symposium on Frequency Control”, Philadelphia, PA, May 1985 (Institute of Electronic and Electrical Engineers, New York, 1985) p. 282.

    Google Scholar 

  48. A. P. Honess, “The Nature, Origin and Interpretation of the Etch Figures on Crystals” (Wiley, New York, 1927) Chs III and VI.

    Google Scholar 

  49. C. R. Tellier, P. Blind and D. Jozwick, in “Proceedings of the 2nd European Frequency and Time Forum”, 5971-01, Switzerland, March 1988 (Fondation Suisse pour la Recherche en Microtechniques, Neuchâtel, 1988) pp. 937–58.

    Google Scholar 

  50. B. A. Irving, J. Appl. Phys. 31 (1960) 109.

    Article  CAS  Google Scholar 

  51. “Standard on Piézoelectricity” (IEEE, New York, 1978) p. 15.

  52. A. Brahim-Bounab, Thesis 279, University of Franche-Comté, BesanÇon, France, 25 September 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tellier, C.R., Brahim-Bounab, A. Anisotropic etching of silicon crystals in KOH solution. JOURNAL OF MATERIALS SCIENCE 29, 5953–5971 (1994). https://doi.org/10.1007/BF00366880

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00366880

Keywords

Navigation