Skip to main content
Log in

Oligosaccharins: structures and signal transduction

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Albersheim P, Anderson AJ: Proteins from plant cell walls inhibit polygalacturonases secreted by plant pathogens. Proc Natl Acad Sci USA 68: 1815–1819 (1971).

    PubMed  Google Scholar 

  2. Albersheim P, Darvill AG: Oligosaccharins. Sci Am 253(3): 58–64 (1985).

    PubMed  Google Scholar 

  3. Albersheim P, Darvill AG, McNeil M, Valent BS, Sharp JK, Nothnagel EA, Davis KR, Yamazaki N, Gollin DJ, York WS, Dudman WF, Darvill JE, Dell A: Oligosaccharins: Naturally occurring carbohydrates with biological regulatory functions. In: Ciferri O, Dure LIII (eds) Structure and Function of Plant Genomes, pp. 293–312. Plenum, New York, (1983).

    Google Scholar 

  4. Albersheim P, Valent BS: Host-pathogen interactions. VII. Plant pathogens secrete proteins which inhibit enzymes of the host capable of attacking the pathogen. Plant Physiol 53: 684–687 (1974).

    Google Scholar 

  5. Aldington S, Fry SC: Oligosaccharins. Adv Bot Res 19: 1–101 (1993).

    Google Scholar 

  6. Anderson AJ: The biology of glycoproteins as elicitors. In: Kosuge T, Nester E (eds) Plant-Microbe Interactions: Molecular and Genetic Perspectives, vol. 3, pp. 87–130. McGraw-Hill, New York (1989).

    Google Scholar 

  7. Apostol I, Heinstein PF, Low PS: Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Role in defense and signal transduction. Plant Physiol 90: 109–116 (1989).

    Google Scholar 

  8. Augur C, Benhamou N, Darvill A, Albersheim P: Purification, characterization, and cell wall localization of an α-fucosidase that inactivates a xyloglucan oligosaccharin. Plant J 3: 415–426 (1993).

    Article  PubMed  Google Scholar 

  9. Augur C, Yu L, Sakai K, Ogawa T, Sinaÿ P, Darvill AG, Albersheim P: Further studies of the ability of xyloglucan oligosaccharides to inhibit auxin-stimulated growth. Plant Physiol 99: 180–185 (1992).

    Google Scholar 

  10. Ayers AR, Ebel J, Finelli F, Berger N, Albersheim P: Host-pathogen interactions. IX. Quantitative assays of elicitor activity and characterization of the elicitor present in the extracellular medium of cultures of Phytophthora megasperma var. sojae. Plant Physiol 57: 751–759 (1976).

    Google Scholar 

  11. Ayers AR, Ebel J, Valent B, Albersheim P: Host-pathogen interactions. X. Fractionation and biological activity of an elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae. Plant Physiol 57: 760–765 (1976).

    Google Scholar 

  12. Ayers AR, Valent B, Ebel J, Albersheim P: Host-pathogen interactions. XI. Composition and structure of wall-released elicitor fractions. Plant Physiol 57: 766–774 (1976).

    Google Scholar 

  13. Baker CJ, Mock N, Atkinson MM, Hutcheson S: Inhibition of the hypersensitive response in tobacco by pectate lyase digests of cell wall and of polygalacturonic acid. Physiol Mol Plant Path 37: 155–167 (1990).

    Google Scholar 

  14. Baldwin EA, Biggs RH: Cell-wall lysing enzymes and products of cell-wall digestion elicit ethylene in citrus. Physiol Plant 73: 58–64 (1988).

    Google Scholar 

  15. Barber MS, Bertram RE, Ride JP: Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiol Mol Plant Path 34: 3–12 (1989).

    Google Scholar 

  16. Bartnicki-Garcia S: Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol 22: 87–108 (1968).

    Article  PubMed  Google Scholar 

  17. Basse CW, Bock K, Boller T: Elicitors and suppressors of the defense response in tomato cells. Purification and characterization of glycopeptide elicitors and glycan suppressors generated by enzymatic cleavage of yeast invertase. J Biol Chem 267: 10258–10265 (1992).

    PubMed  Google Scholar 

  18. Basse CW, Boller T: Glycopeptide elicitors of stress responses in tomato cells. N-linked glycans are essential for activity but act as suppressors of the same activity when released from the glycopeptides. Plant Physiol 98: 1239–1247 (1992).

    Google Scholar 

  19. Basse CW, Fath A, Boller T: High affinity binding of a glycopeptide elicitor to tomato cells and microsomal membranes and displacement by specific glycan suppressors. J Biol Chem 268: 14724–14731 (1993).

    PubMed  Google Scholar 

  20. Bauer WD, Talmadge KW, Keegstra K, Albersheim P: The structure of plant cell walls. II. The hemicellulose of the walls of suspension-cultured sycamore cells. Plant Physiol 51: 174–187 (1973).

    Google Scholar 

  21. Baureithel K, Felix G, Boller T: Specific, high affinity binding of chitin fragments to tomato cells and membranes. Competitive inhibition of binding by derivatives of chitin fragments and a nod factor of Rhizobium. J Biol Chem 269: 17931–17938 (1994).

    PubMed  Google Scholar 

  22. Baydoun EA-H, Fry SC: The immobility of pectic substances in injured tomato leaves and its bearing on the identity of the wound hormone. Planta 165: 269–276 (1985).

    Google Scholar 

  23. Bellincampi D, De Lorenzo G, Cervone F: Oligogalacturonides as signal molecules in plant pathogen interactions and in plant growth and development. TAPTC Newsl, in press (1994).

  24. Bellincampi D, Salvi G, DeLorenzo G, Cervone F, Marfà V, Eberhard S, Darvill A, Albersheim P: Oligogalacturonides inhibit the formation of roots on tobacco explants. Plant J 4: 207–213 (1993).

    Article  Google Scholar 

  25. Bergmann CW, Ito Y, Singer D, Albersheim P, Darvill AG, Benhamou N, Nuss L, Salvi G, Cervone F, DeLorenzo G: Polygalacturonase-inhibiting protein accumulates in Phaseolus vulgaris L. in response to wounding, elicitors and fungal infection. Plant J 5: 625–634 (1994).

    PubMed  Google Scholar 

  26. Bhandal IS, Paxton JD: Phytoalexin biosynthesis induced by the fungal glucan polytran L in soybean, pea, and sweet pepper tissues. J Agric Food Chem 39: 2156–2157 (1991).

    Google Scholar 

  27. Birberg W, Fügedi P, Garegg PJ, Pilotti Å: Syntheses of a heptasaccharide β-linked to an 8-methoxycarbonyl-oct-1-yl linking arm and of a decasaccharide with structures corresponding to the phytoelicitor active glucan of Phytophthora megasperma f.sp. glycinea. J Carbohydr Chem 8: 47–57 (1989).

    Google Scholar 

  28. Bishop PD, Pearce G, Bryant JE, Ryan CA: Isolation and characterization of the proteinase inhibitor-inducing factor from tomato leaves. Identity and activity of poly- and oligogalacturonide fragments. J Biol Chem 259: 13172–13177 (1984).

    PubMed  Google Scholar 

  29. Bol JF, Linthorst HJM, Cornelissen BJC: Plant pathogenesis-related proteins induced by virus infection. Annu Rev Phytopath 28: 113–138 (1990).

    Article  Google Scholar 

  30. Boller T: Hydrolytic enzymes in plant disease resistance. In: Kosuge T, Nester EW (eds) Plant-Microbe Interactions. Molecular and Genetic Perspectives, vol. 2, pp. 385–413. Macmillan, New York (1987).

    Google Scholar 

  31. Bonhoff A, Loyal R, Ebel J, Grisebach H: Race: cultivar-specific induction of enzymes related to phytoalexin biosynthesis in soybean roots following infection with Phytophthora megasperma f. sp. glycinea. Arch Biochem Biophys 246: 149–154 (1986).

    PubMed  Google Scholar 

  32. Bourin M-C, Lindahl U: Glycosaminoglycans and the regulation of blood coagulation. Biochem J 289: 313–330 (1993).

    PubMed  Google Scholar 

  33. Brady KP, Darvill AG, Albersheim P: Activation of a tobacco glycine-rich protein gene by a fungal glucan preparation. Plant J 4: 517–524 (1993).

    Article  PubMed  Google Scholar 

  34. Branca C, DeLorenzo G, Cervone F: Competitive inhibition of the auxin-induced elongation by α-d-oligogalacturonides in pea stem segments. Physiol Plant 72: 499–504 (1988).

    Google Scholar 

  35. Brecht JK, Huber DJ: Products released from enzymically active cell wall stimulate ethylene production and ripening in preclimacteric tomato (Lycopersicon esculentum Mill.) fruit. Plant Physiol 88: 1037–1041 (1988).

    Google Scholar 

  36. Broekaert WF, Peumans WJ: Pectic polysaccharides elicit chitinase accumulation in tobacco. Physiol Plant 74: 740–744 (1988).

    Google Scholar 

  37. Bruce RJ, West CA: Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension-cultures of castor bean. Plant Physiol 91: 889–897 (1989).

    Google Scholar 

  38. Campbell AD, Labavitch JM: Induction and regulation of ethylene biosynthesis and ripening by pectic oligomers in tomato pericarp discs. Plant Physiol 97: 706–713 (1991).

    Google Scholar 

  39. Campbell AD, Labavitch JM: Induction and regulation of ethylene biosynthesis by pectic oligomers in cultured pear cells. Plant Physiol 97: 699–705 (1991).

    Google Scholar 

  40. Cervone F, DeLorenzo G, Degrà L, Salvi G: Elicitation of necrosis in Vigna unguiculata Walp. by homogeneous Aspergillus niger endo-polygalacturonase and by α-d-galacturonate oligomers. Plant Physiol 85: 626–630 (1987).

    Google Scholar 

  41. Cervone F, DeLorenzo G, Degrà L, Salvi G, Bergami M: Purification and characterization of a polygalacturonase-inhibiting protein from Phaseolus vulgaris L.. Plant Physiol 85: 631–637 (1987).

    Google Scholar 

  42. Cervone F, DeLorenzo G, Pressey R, Darvill AG, Albersheim P: Can Phaseolus PGIP inhibit pectic enzymes from microbes and plants? Phytochemistry 29: 447–449 (1990).

    Google Scholar 

  43. Cervone F, DeLorenzo G, Salvi G, Bergmann C, Hahn MG, Ito Y, Darvill A, Albersheim P: Release of phytoalexin elicitor-active oligogalacturonides by microbial pectic enzymes. In: Lugtenberg BJJ (ed) Signal Molecules in Plants and Plant-Microbe Interactions. NATO ASI Series, vol. H36, pp. 85–89. Springer-Verlag, Heidelberg, FRG (1989).

    Google Scholar 

  44. Cervone F, Hahn MG, DeLorenzo G, Darvill A, Albersheim P: Host-pathogen interactions. XXXIII. A plant protein converts a fungal pathogenesis factor into an elicitor of plant defense responses. Plant Physiol 90: 542–548 (1989).

    Google Scholar 

  45. Cheong J-J, Alba R, Côté F, Enkerli J, Hahn MG: Solubilization of functional plasma membrane-localized hepta-β-glucoside elicitor binding proteins from soybean. Plant Physiol 103: 1173–1182 (1993).

    PubMed  Google Scholar 

  46. Cheong J-J, Birberg W, Fügedi P, Pilotti Å, Garegg PJ, Hong N, Ogawa T, Hahn MG: Structure-activity relationships of oligo-β-glucoside elicitors of phytoalexin accumulation in soybean. Plant Cell 3: 127–136 (1991).

    PubMed  Google Scholar 

  47. Cheong J-J, Hahn MG: A specific, high-affinity binding site for the hepta-β-glucoside elicitor exists in soybean membranes. Plant Cell 3: 137–147 (1991).

    Article  PubMed  Google Scholar 

  48. Cline K, Wade W, Albersheim P: Host-pathogen interactions. XV. Fungal glucans which elicit phytoalexin accumulation in soybean also elicit the accumulation of phytoalexins in other plants. Plant Physiol 62: 918–921 (1978).

    Google Scholar 

  49. Conrath U, Domard A, Kauss H: Chitosan-elicited synthesis of callose and of coumarin derivatives in parsley cell suspension cultures. Plant Cell Rep 8: 152–155 (1989).

    Google Scholar 

  50. Cosio EG, Frey T, Ebel J: Solubilization of soybean membrane binding sites for fungal β-glucans that elicit phytoalexin accumulation. FEBS Lett 264: 235–238 (1990).

    Article  PubMed  Google Scholar 

  51. Cosio EG, Frey T, Ebel J: Identification of a high-affinity binding protein for a hepta-β-glucoside phytoalexin elicitor in soybean. Eur J Biochem 204: 1115–1123 (1992).

    PubMed  Google Scholar 

  52. Cosio EG, Frey T, Verduyn R, VanBoom J, Ebel J: High-affinity binding of a synthetic heptaglucoside and fungal glucan phytoalexin elicitors to soybean membranes. FEBS Lett 271: 223–226 (1990).

    PubMed  Google Scholar 

  53. Cosio EG, Pöpperl H, Schmidt WE, Ebel J: High-affinity binding of fungal β-glucan fragments to soybean (Glycine max L.) microsomal fractions and protoplasts. Eur J Biochem 175: 309–315 (1988).

    PubMed  Google Scholar 

  54. Cummings RD, Smith DF: The selectin family of carbohydrate-binding proteins: structure and importance of carbohydrate ligands for cell adhesion. Bio-Essays 14: 849–856 (1992).

    Google Scholar 

  55. Czop JK, Austen KF: A β-glucan inhibitable receptor on human monocytes: Its identity with the phagocytic receptor for particulate activators of the alternative complement pathway. J Immunol 134: 2588–2593 (1985).

    PubMed  Google Scholar 

  56. Darvill AG, Albersheim P: Phytoalexins and their elicitors: a defense against microbial infection in plants. Annu Rev Plant Physiol 35: 243–275 (1984).

    Google Scholar 

  57. Darvill A, Augur C, Bergmann C, Carlson RW, Cheong J-J, Eberhard S, Hahn MG, Lo V-M, Marfà V, Meyer B, Mohnen D, O'Neill MA, Spiro MD, vanHalbeek H, York WS, Albersheim P: Oligosaccharins-oligosaccharides that regulate growth, development and defense responses in plants. Glycobiology 2: 181–198 (1992).

    PubMed  Google Scholar 

  58. Davis D, Merida J, Legendre L, Low PS, Heinstein P: Independent elicitation of the oxidative burst and phytoalexin formation in cultured plant cells. Phytochemistry 32: 607–611 (1993).

    Google Scholar 

  59. Davis KR, Darvill AG, Albersheim P: Host-pathogen interactions. XXXI. Several biotic and abiotic elicitors act synergistically in the induction of phytoalexin accumulation in soybean. Plant Mol Biol 6: 23–32 (1986).

    Google Scholar 

  60. Davis KR, Darvill AG, Albersheim P, Dell A: Host-pathogen interactions. XXIX. Oligogalacturonides released from sodium polypectate by endopolygalacturonic acid lyase are elicitors of phytoalexins in soybean. Plant Physiol 80: 568–577 (1986).

    Google Scholar 

  61. Davis KR, Darvill AG, Albersheim P, Dell A: Host-pathogen interactions. XXX. Characterization of elicitors of phytoalexin accumulation in soybean released from soybean cell walls by endopolygalacturonic acid lyase. Z Naturforsch 41c: 39–48 (1986).

    Google Scholar 

  62. Davis KR, Hahlbrock K: Induction of defense responses in cultured parsley cells by plant cell wall fragments. Plant Physiol 85: 1286–1290 (1987).

    Google Scholar 

  63. Davis KR, Lyon GD, Darvill AG, Albersheim P: Host-pathogen interactions. XXV. Endopolygalacturonic acid lyase from Erwinia carotovora elicits phytoalexin accumulation by releasing plant cell wall fragments. Plant Physiol 74: 52–60 (1984).

    Google Scholar 

  64. DeLorenzo G, Cervone F, Hahn MG, Darvill A, Albersheim P: Bacterial endopectate lyase: evidence that plant cell wall pH prevents tissue maceration and increases the half-life of elicitor-active oligogalacturonides. Physiol Mol Plant Path 39: 335–344 (1991).

    Google Scholar 

  65. DeLorenzo G, Ito Y, D'Ovidio R, Cervone F, Albersheim P, Darvill AG: Host-pathogen interactions. XXXVII. Abilities of the polygalacturonase-inhibiting proteins from four cultivars of Phaseolus vulgaris to inhibit the endopolygalacturonases from three races of Colletotrichum lindemuthianum. Physiol Mol Plant Path 36: 421–435 (1990).

    Google Scholar 

  66. deWit PJGM: Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annu Rev Phytopath 30: 391–418 (1992).

    Article  Google Scholar 

  67. Dhawale S, Souciet G, Kuhn DN: Increase of chalcone synthase mRNA in pathogen-inoculated soybeans with race-specific resistance is different in leaves and roots. Plant Physiol 91: 911–916 (1989).

    Google Scholar 

  68. Diekmann W, Herkt B, Low PS, Nürnberger T, Scheel D, Terschüren C, Robinson DG: Visualization of elicitor binding loci at the plant cell surface. Planta 195: 126–137 (1994).

    Article  Google Scholar 

  69. Dixon RA: The phytoalexin response: elicitation, signalling and control of host gene expression. Biol Rev 61: 239–291 (1986).

    Article  Google Scholar 

  70. Dixon RA, Jennings AC, Davies LA, Gerrish C, Murphy DL: Elicitor active components from Franch bean hypocotyls. Physiol Mol Plant Path 34: 99–115 (1989).

    Google Scholar 

  71. Dixon RA, Lamb CJ: Molecular communication in interactions between plants and microbial pathogens. Annu Rev Plant Physiol Plant Mol Biol 41: 339–367 (1990).

    Article  Google Scholar 

  72. Ebel J: Phytoalexin synthesis: The biochemical analysis of the induction process. Annu Rev Phytopath 24: 235–264 (1986).

    Article  Google Scholar 

  73. Ebel J, Cosio EG: Elicitors of plant defense responses. Int Rev Cytol 148: 1–36 (1994).

    Google Scholar 

  74. Ebel J, Cosio EG, Feger M, Frey T, Kissel U, Reinold S, Waldmüller T: Glucan elicitor-binding proteins and signal transduction in the activation of plant defence. In: Nester EW, Verma DPS (eds) Advances in Moleclar Genetics of Plant-Microbe Interactions, vol. 2, pp. 477–484. Kluwer Academic Publishers, Dordrecht, Netherlands (1993).

    Google Scholar 

  75. Eberhard S, Doubrava N, Marfà V, Mohnen D, Southwick A, Darvill A, Albersheim P: Pectic cell wall fragments regulate tobacco thin-cell-layer explant morphogenesis. Plant Cell 1: 747–755 (1989).

    Article  PubMed  Google Scholar 

  76. ElRassi Z, Tedford D, An J, Mort A: High-performance reversed-phase chromatographic mapping of 2-pyridylamino derivatives of xyloglucan oligosaccharides. Carbohydr Res 215: 25–38 (1991).

    Article  PubMed  Google Scholar 

  77. Emmerling M, Seitz HU: Influence of a specific xyloglucan-nonasaccharide derived from cell walls of suspension-cultured cells of Daucus carota L. on regenerating carrot protoplasts. Planta 182: 174–180 (1990).

    Article  Google Scholar 

  78. Fanutti C, Gidley MJ, Reid JSG: A xyloglucan-oligosaccharide-specific α-d-xylosidase or exo-oligo-xyloglucan-α-xylohydrolase from germinated nasturtium (Tropaeolum majus L.) seeds. Purification, properties and its interaction with a xyloglucan-specific endo-(1→4)-β-d-glucanase and other hydrolases during storage-xyloglucan mobilisation. Planta 184: 137–147 (1991).

    Article  Google Scholar 

  79. Farkas V, Hanna R, Maclachlan G: Xyloglucan oligosaccharide α-l-fucosidase activity from growing pea stems and germinating nasturtium seeds. Phytochemistry 30: 3203–3207 (1991).

    Article  PubMed  Google Scholar 

  80. Farmer EE, Moloshok TD, Ryan CA: In vitro phosphorylation in response to oligouronide elicitors: structural and biological relationships. Curr Top Plant Biochem Physiol 9: 249–258 (1990).

    Google Scholar 

  81. Farmer EE, Moloshok TD, Saxton MJ, Ryan CA: Oligosaccharide signalling in plants: Specificity of oligouronide-enhanced plasma membrane protein phosphorylation. J Biol Chem 266: 3140–3145 (1991).

    PubMed  Google Scholar 

  82. Farmer EE, Pearce G, Ryan CA: In vitro phosphorylation of plant plasma membrane proteins in response to the proteinase inhibitor inducing factor. Proc Natl Acad Sci USA 86: 1539–1542 (1989).

    Google Scholar 

  83. Favaron F, Alghisi P, Marciano P: Characterization of two Sclerotinia sclerotiorum polygalacturonases with different abilities to elicit glyceollin in soybean. Plant Sci 83: 7–13 (1992).

    Article  Google Scholar 

  84. Feizi T: Oligosaccharides that mediate mammalian cell-cell adhesion. Curr Opin Struct Biol 3: 701–710 (1993).

    Article  Google Scholar 

  85. Felix G, Grosskopf DG, Regenass M, Basse CW, Boller T: Elicitor-induced ethylene biosynthesis in tomato cells. Characterization and use as a bioassay for elicitor action. Plant Physiol 97: 19–25 (1991).

    Google Scholar 

  86. Felix G, Regenass M, Boller T: Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: Induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. Plant J 4: 307–316 (1993).

    Article  Google Scholar 

  87. Forrest RS, Lyon GD: Substrate degradation patterns of polygalacturonic acid lyase from Erwinia carotovora and Bacillus polymyxa and release of phytoalexin-eliciting oligosaccharides from potato cell walls. J Exp Bot 41: 481–488 (1990).

    Google Scholar 

  88. Frey T, Cosio EG, Ebel J: Affinity purification and characterization of a binding protein for a hepta-β-glucoside phytoalexin elicitor in soybean. Phytochemistry 32: 543–550 (1993).

    Article  Google Scholar 

  89. Fry SC: In vivo formation of xyloglucan nonasaccharide: a possible biologically active cell-wall fragment. Planta 169: 443–453 (1986).

    Google Scholar 

  90. Fry SC: The structure and functions of xyloglucan. J Exp Bot 40: 1–11 (1989).

    Google Scholar 

  91. Fry SC, Aldington S, Hetherington PR, Aitken J: Oligosaccharides as signals and substrates in the plant cell wall. Plant Physiol 103: 1–5 (1993).

    Article  PubMed  Google Scholar 

  92. Fry SC, York WS, Albersheim P, Darvill A, Hayashi T, Joseleau J-P, Kato Y, Lorences EP, Maclachlan GA, McNeil M, Mort AJ, Reid JSG, Seitz HU, Selvendran RR, Voragen AGJ, White AR: An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiol Plant 89: 1–3 (1993).

    Article  Google Scholar 

  93. Fügedi P, Birberg W, Garegg PJ, Pilotti Å: Syntheses of a branched heptasaccharide having phytoalexin-elicitor activity. Carbohydr Res 164: 297–312 (1987).

    Article  Google Scholar 

  94. Gilroy S, Trewavas A: Signal sensing and signal transduction across the plasma membrane. In: Larsson C, Möller IM (eds) The Plant Plasma Membrane, pp. 203–232. Springer-Verlag, Berlin (1990).

    Google Scholar 

  95. Grab D, Feger M, Ebel J: An endogenous factor from soybean (Glycine max L.) cell cultures activates phosphorylation of a protein which is dephosphorylated in vivo in elicitor-challenged cells. Planta 179: 340–348 (1989).

    Google Scholar 

  96. Graham TL: Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates. Plant Physiol 95: 594–603 (1991).

    Google Scholar 

  97. Graham TL, Graham MY: Glyceollin elicitors induce major but distinctly different shifts in isoflavonoid metabolism in proximal and distal soybean cell populations. Mol Plant-Microbe Interact 4: 60–68 (1991).

    Google Scholar 

  98. Graham TL, Kim JE, Graham MY: Role of constitutive isoflavone conjugates in the accumulation of glyceollin in soybean infected with Phytophthora megasperma. Mol Plant-Microbe Interact 3: 157–166 (1990).

    Google Scholar 

  99. Grant GT, Morris ER, Rees DA, Smith PJC, Thom D: Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Lett 32: 195–198 (1973).

    Article  Google Scholar 

  100. Grenier J, Asselin A: Some pathogenesis-related proteins are chitosanases with lytic activity against fungal spores. Mol Plant-Microbe Interact 3: 401–407 (1990).

    Google Scholar 

  101. Grosskopf DG, Felix G, Boller T: A yeast-derived glycopeptide elicitor and chitosan or digitonin differentially induce ethylene biosynthesis, phenylalanine ammonialyase and callose formation in suspension-cultured tomato cells. J Plant Physiol 138: 741–746 (1991).

    Google Scholar 

  102. Gunia W, Hinderer W, Wittkampf U, Barz W: Elicitor induction of cytochrome P-450 monooxygenases in cell suspension cultures of chickpea (Cicer arietinum L.) and their involvement in pterocarpan phytoalexin biosynthesis. Z Naturforsch 46c: 58–66 (1991).

    Google Scholar 

  103. Hadwiger LA, Beckman JM: Chitosan as a component of pea-Fusarium solani interactions. Plant Physiol 66: 205–211 (1980).

    Google Scholar 

  104. Hadwiger LA, Line RF: Hexosamine accumulations are associated with the terminated growth of Puccinia striiformis on wheat isolines. Physiol Mol Plant Path 19: 249–255 (1981).

    Google Scholar 

  105. Hadwiger LA, Ogawa T, Kuyama H: Chitosan polymer sizes effective in inducing phytoalexin accumulation and fungal suppression are verified with synthesized oligomers. Mol Plant-Microbe Interact 7: 531–553 (1994).

    PubMed  Google Scholar 

  106. Hahlbrock K, Scheel D: Biochemical responses of plants to pathogens. In: Chet I (ed) Innovative Approaches to Plant Disease Control, pp. 229–254. John Wiley, New York (1987).

    Google Scholar 

  107. Hahn MG: Animal receptors: examples of cellulan signal perception molecules. In: Lugtenberg BJJ (ed) Signal Molecules in Plants and Plant-Microbe Interactions. NATO ASI Series, vol. H36, pp. 1–26. Springer-Verlag, Heidelberg (1989).

    Google Scholar 

  108. Hahn MG, Albersheim P: Host-pathogen interactions. XIV. Isolation and partial characterization of an elicitor from yeast extract. Plant Physiol 62: 107–111 (1978).

    Google Scholar 

  109. Hahn MG, Bucheli P, Cervone F, Doares SH, O'Neill RA, Darvill A, Albersheim P: Roles of cell wall constituents in plant-pathogen interactions. In: Kosuge T, Nester EW (eds) Plant-Microbe Interactions: Molecular and Genetic Perspectives, vol. 3, pp. 131–181. McGraw-Hill, New York (1989).

    Google Scholar 

  110. Hahn MG, Cheong J-J, Alba R, Côté F: Oligosaccharide elicitors: Structures and signal transduction. In: Schultz J, Raskin I (eds) Plant Signals in Interactions with other Organisms, pp. 24–46. American Society of Plant Physiologists, Rockville, MD (1993).

    Google Scholar 

  111. Hahn MG, Cheong J-J, Birberg W, Fügedi P, Pilotti Å, Garegg P, Hong N, Nakahara Y, Ogawa T: Elicitation of phytoalexins by synthetic oligoglucosides, synthetic oligogalacturonides, and their derivatives. In: Lugtenberg BJJ (ed) Signal Molecules in Plants and Plant-Microbe Interactions. NATO ASI Series, vol. H36, pp. 91–17. Springer-Verlag, Heidelberg, FRG (1989).

    Google Scholar 

  112. Hahn MG, Darvill AG, Albersheim P: Host-pathogen interactions. XIX. The endogenous elicitor, a fragment of a plant cell wall polysaccharide that elicits phytoalexin accumulation in soybeans. Plant Physiol 68: 1161–1169 (1981).

    Google Scholar 

  113. Hahn MG, Grisebach H: Cyclic AMP is not involved as a second messenger in the response of soybean to infection by Phytophthora megasperma f.sp. glycinea. Z Naturforsch 38c: 578–582 (1983).

    Google Scholar 

  114. Ham K-S, Darvill AG, Albersheim P: A fungal pathogen secretes a protein that specifically inhibits a β-1,3-glucanase pathogenesis-related protein of its host. Unpublished work (1993).

  115. Ham K-S, Kauffmann S, Albersheim P, Darvill AG: Host-pathogen interactions. XXXIX. A soybean pathogensis-related protein with β-1,3-glucanase activity releases phytoalexin elicitor-active heat-stable fragments from fungal walls. Mol Plant-Microbe Interact 4: 545–552 (1991).

    Google Scholar 

  116. Hargreaves JA, Bailey JA: Phytoalexin production by hypocotyls of Phaseolus vulgaris in response to constitutive metabolites released by damaged bean cells. Physiol Plant Path 13: 89–100 (1978).

    Google Scholar 

  117. Hargreaves JA, Selby C: Phytoalexin formation in cell suspensions of Phaseolus vulgaris in response to an extract of bean hypocotyls. Phytochemistry 17: 1099–1102 (1978).

    Article  Google Scholar 

  118. Hayashi T: Xyloglucans in the primary cell wall. Annu Rev Plant Physiol Plant Mol Biol 40: 139–168 (1989).

    Article  Google Scholar 

  119. Hensel A, Brummell DA, Hanna R, Maclachlan G: Auxin-dependent breakdown of xyloglucan in cotyledons of germinating nasturtium seeds. Planta 183: 321–326 (1991).

    Article  Google Scholar 

  120. Hisamatsu M, Impallomeni G, York WS, Albersheim P, Darvill AG: A new undecasaccharide subunit of xyloglucans with two α-l-fucosyl residues. Carbohydr Res 211: 117–129 (1991).

    Article  PubMed  Google Scholar 

  121. Hisamatsu M, York WS, Darvill AG, Albersheim P: Characterization of seven xyloglucan oligosaccharides containing from seventeen to twenty glycosyl residues. Carbohydr Res 227: 45–71 (1992).

    Article  PubMed  Google Scholar 

  122. Hollenberg MD: Structure-activity relationships for transmembrane signalling: The receptor's turn. FASEB J 5: 178–186 (1991).

    PubMed  Google Scholar 

  123. Hong N, Ogawa T: Stereocontrolled syntheses of phytoalexin elicitor-active β-d-glucohexaoside and β-d-glucononaoside. Tetrahedron Lett 31: 3179–3182 (1990).

    Article  Google Scholar 

  124. Horn MA, Heinstein PF, Low PS: Receptor-mediated endocytosis in plant cells. Plant Cell 1: 1003–1009 (1989).

    Article  PubMed  Google Scholar 

  125. Hoson T, Masuda Y: Effect of xyloglucan nonasaccharide on cell elongation induced by 2,4-dichlorophenoxyacetic acid and indole-3-acetic acid. Plant Cell Physiol 32: 777–782 (1991).

    Google Scholar 

  126. Jann B, Jann K: Structure and biosynthesis of the capsular antigens of Escherichia coli. Curr Top Microbiol Immunol 150: 19–42 (1990).

    PubMed  Google Scholar 

  127. Jin DF, West CA: Characteristics of galacturonic acid oligomers as elicitors of casbene synthetase activity in castor bean seedlings. Plant Physiol 74: 989–992 (1984).

    Google Scholar 

  128. Jones AM: Surprising signals in plant cells. Science 263: 183–184 (1994).

    Google Scholar 

  129. Jones TM, Anderson AJ, Albersheim P: Host-pathogen interactions. IV. Studies on the polysaccharide-degrading enzymes secreted by Fusarium oxysporum f.sp. lycopersici. Physiol Plant Path 2: 153–166 (1972).

    Google Scholar 

  130. Joseleau JP, Cartier N, Chambat G, Faik A, Ruel K: Structural features and biological activity of xyloglucans from suspension-cultured plant cells. Biochimie 74: 81–88 (1992).

    Article  PubMed  Google Scholar 

  131. Kauss H, Jeblick W, Domard A: The degree of polymerization and N-acetylation of chitosan determine its ability to elicit callose formation in suspension cells and protoplasts of Catharanthus roseus. Planta 178: 385–392 (1989).

    Google Scholar 

  132. Keen NT: Specific elicitors of plant phytoalexin production: determinants of race specificity in pathogens? Science 187: 74–75 (1975).

    Google Scholar 

  133. Kendra DF, Christian D, Hadwiger LA: Chitosan oligomers from Fusarium solani pea interactions, chitinase/β-glucanase digestion of sporelings and from fungal wall chitin actively inhibit fungal growth and enhance disease resistance. Physiol Mol Plant Path 35: 215–230 (1989).

    Google Scholar 

  134. Kendra DF, Hadwiger LA: Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum. Exp Mycol 8: 276–281 (1984).

    Google Scholar 

  135. Kendra DF, Hadwiger LA: Calcium and calmodulin may not regulate the disease resistance and pisatin formation responses of Pisum sativum to chitosan or Fusarium solani. Physiol Mol Plant Path 31: 337–348 (1987).

    Google Scholar 

  136. Kendra DF, Hadwiger LA: Cell death and membrane leakage not associated with the induction of disease resistance in peas by chitosan or Fusarium solani f. sp. phaseoli. Phytopathology 77: 100–106 (1987).

    Google Scholar 

  137. Kiefer LL, York WS, Albersheim P, Darvill AG: Structural characterization of an arabinose-containing heptadecasaccharide enzymically isolated from sycamore extracellular xyloglucan. Carbohydr Res 197: 139–158 (1990).

    Article  Google Scholar 

  138. Kobayashi A, Tai A, Kanzaki H, Kawazu K: Elicitor-active oligosaccharides from algal laminaran stimulate the production of antifungal compounds in alfalfa. Z Naturforsch 48c: 575–579 (1993).

    Google Scholar 

  139. Kohn R: Ion binding on polyuronates-alginate and pectin. Pure Appl Chem 42: 371–397 (1975).

    Google Scholar 

  140. Kohn R: Binding of divalent cations to oligomeric fragments of pectin. Carbohydr Res 160: 343–353 (1987).

    Article  Google Scholar 

  141. Komae K, Komae A, Misaki A: A 4,5-unsaturated low molecular oligogalacturonide as a potent phytoalexin-elicitor isolated from polygalacturonide of Ficus awkeotsang. Agric Biol Chem 54: 1477–1484 (1990).

    Google Scholar 

  142. Kooiman P: The constitution of Tamarindus-amyloid. Rec Trav Chim 80: 849–865 (1961).

    Google Scholar 

  143. Kopp M, Rouster J, Fritig B, Darvill A, Albersheim P: Host-pathogen interactions. XXXII. A fungal glucan preparation protects Nicotianae against infection by viruses. Plant Physiol 90: 208–216 (1989).

    Google Scholar 

  144. Köhle H, Jeblick W, Poten F, Blashek W, Kauss H: Chitosan-elicited callose synthesis in soybean cells as a Ca2+-dependent process. Plant Physiol 77: 544–551 (1985).

    Google Scholar 

  145. Köhle H, Young DH, Kauss H: Physiological changes in suspension-cultured soybean cells elicited by treatment with chitosan. Plant Sci Lett 33: 221–230 (1984).

    Google Scholar 

  146. Kuchitsu K, Kikuyama M, Shibuya N: N-acetylchitooligosaccharides, biotic élictor for phytoalexin production, induce transient membrane depolarization in suspension-cultured rice cells. Protoplasma 174: 79–81 (1993).

    Google Scholar 

  147. Lamb CJ, Lawton MA, Dron M, Dixon RA: Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56: 215–224 (1989).

    PubMed  Google Scholar 

  148. Legendre L, Heinstein PF, Low PS: Evidence for participation of GTP-binding proteins in elicitation of the rapid oxidative burst in cultured soybean cells. J Biol Chem 267: 20140–20147 (1992).

    PubMed  Google Scholar 

  149. Legendre L, Rueter S, Heinstein PF, Low PS: Characterization of the oligogalacturonide-induced oxidative burst in cultured soybean (Glycine max) cells. Plant Physiol 102: 233–240 (1993).

    PubMed  Google Scholar 

  150. Legendre L, Yueh YG, Crain R, Haddock N, Heinstein PF, Low PS: Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells. J Biol Chem 268: 24559–24563 (1993).

    PubMed  Google Scholar 

  151. Lerouge P: Symbiotic host specificity between leguminous plants and rhizobia is determined by substituted and acylated glucosamine oligosaccharide signals. Glycobiology 4: 127–134 (1994).

    PubMed  Google Scholar 

  152. Lesney MS: Growth responses and lignin production in cell suspensions of Pinus elliottii ‘elicited’ by chitin, chitosan or mycelium of Cronartium quercum f.sp. fusiforme. Plant Cell Tiss Organ Cult 19: 23–31 (1989).

    Google Scholar 

  153. Lesney MS: Effect of ‘elicitors’ on extracellular peroxidase activity in suspension-cultured slash pine (Pinus elliottii Engelm.). Plant Cell Tiss Organ Cult 20: 173–175 (1990).

    Google Scholar 

  154. Liners F, Letesson J-J, Didembourg C, VanCutsem P: Monoclonal antibodies against pectin. Recognition of a conformation induced by calcium. Plant Physiol 91: 1419–1424 (1989).

    Google Scholar 

  155. Liners F, Thibault J-F, VanCutsem P: Influence of the degree of polymerization of oligogalacturonates and of esterification pattern of pectin on their recognition by monoclonal antibodies. Plant Physiol 99: 1099–1104 (1992).

    Google Scholar 

  156. Lorentzen JP, Helpap B, Lockhoff O: Synthese eines elicitoraktiven Heptaglucansaccharides zur Untersuchung pflanzlicher Abwehrmechanismen. Angew Chem 103: 1731–1732 (1991).

    Google Scholar 

  157. Low PS, Legendre L, Heinstein PF, Horn MA: Comparison of elicitor and vitamin receptor-mediated endocytosis in cultured soybean cells. J Exp Bot 44 (Suppl): 269–274 (1993).

    Google Scholar 

  158. Lozovaya VV, Zabotina OA, Rumyantseva NI, Malihov RG, Zihareva MV: Stimulation of root development on buckwheat thin cell-layer explants by pectic fragments from pea stem cell walls. Plant Cell Rep 12: 530–533 (1993).

    Article  Google Scholar 

  159. MacDougall AJ, Rigby NM, Needs PW, Selvendran RR. Movement and metabolism of oligogalacturonide elicitors in tomato shoots. Planta 188: 566–574 (1992).

    Article  Google Scholar 

  160. MacKintosh C, Lyon GD, Mackintosh RW: Protein phosphatase inhibitors activate anti-fungal defence responses of soybean cotyledons and cell cultures. Plant J 5: 137–147 (1994).

    Article  Google Scholar 

  161. Mankarios AT, Friend J: Polysaccharide degrading enzymes of Botrytis allii and Sclerotium cepivorum. Enzyme production in culture and the effect of the enzymes on isolated onion cell walls. Physiol Plant Path 17: 93–104 (1980).

    Google Scholar 

  162. Marfà V, Gollin DJ, Eberhard S, Mohnen D, Darvill A, Albersheim P: Oligogalacturonides are able to induce flowers to form on tobacco explants. Plant J 1: 217–225 (1991).

    Article  Google Scholar 

  163. Masuta C, Van DenBulcke M, Bauw G, VanMontagu M, Caplan AB: Differential effects of elicitors on the viability of rice suspension cells. Plant Physiol 97: 619–629 (1991).

    Google Scholar 

  164. Mathieu Y, Kurkdijan A, Xia H, Guern J, Koller A, Spiro M, O'Neill M, Albersheim P, Darvill A. Membrane responses induced by oligogalacturonides in suspension-cultured tobacco cells. Plant J 1: 333–343 (1991).

    Google Scholar 

  165. Mauch F, Mauch-Mani B, Boller T: Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol 88: 936–942 (1988).

    Google Scholar 

  166. Mauch F, Staehelin LA: Functional implications of the subcellular localization of ethylene-induced chitinase and β-1,3-glucanase in bean leaves. Plant Cell 1: 447–457 (1989).

    Article  PubMed  Google Scholar 

  167. McDougall GJ, Fry SC: Structure-activity relationships for xyloglucan oligosaccharides with antiauxin activity. Plant Physiol 89: 883–887 (1989).

    Google Scholar 

  168. McDougall GJ, Fry SC: Xyloglucan nonasaccharide, a naturally-occurring oligosaccharin, arises in vivo by polysaccharide breakdown. J Plant Physiol 137: 332–336 (1991).

    Google Scholar 

  169. McDougall GJ, Fry SC: Purification and analysis of growth-regulating xyloglucan-derived oligosaccharides by high-pressure liquid chromatography. Carbohydr Res 219: 123–132 (1991).

    Article  PubMed  Google Scholar 

  170. Melotto E, Greve LC, Labavitch JM: Cell wall metabolism. VII. Biologically active pectin oligomers in ripening tomato (Lycopersicon esculentum Mill.) fruits. Plant Physiol 106: 575–581 (1994).

    PubMed  Google Scholar 

  171. Messiaen J, Read ND, VanCutsem P, Trewavas AJ: Cell wall oligogalacturonides increase cytosolic free calcium in carrot protoplasts. J Cell Sci 104: 365–371 (1993).

    Google Scholar 

  172. Mohnen D, Eberhard S, Marfà V, Doubrava N, Toubart P, Gollin DJ, Gruber TA, Nuri W, Albersheim P, Darvill A: The control of root, vegetative shoot and flower morphogenesis in tobacco thin cell-layer explants (TCLs). Development 108: 191–201 (1990).

    PubMed  Google Scholar 

  173. Molano J, Durán A, Cabib E: A rapid and sensitive assay for chitinase using tritiated chitin. Anal Biochem 83: 648–656 (1977).

    PubMed  Google Scholar 

  174. Moloshok T, Pearce G, Ryan CA: Oligouronide signalling of proteinase inhibitor genes in plants: structure-activity relationships of di- and trigalacturonic acids and their derivatives. Arch Biochem Biophys 294: 731–734 (1992).

    PubMed  Google Scholar 

  175. Moloshok T, Ryan CA: Di- and trigalacturonic acid and Delta4,5-di- and Delta4,5-trigalacturonic acids: Inducers of proteinase inhibitor genes in plants. Meth Enzymol 179: 566–569 (1989).

    PubMed  Google Scholar 

  176. Nakahara Y, Ogawa T: Stereocontrolled, total synthesis of α-d-GalA-[(1»4)-α-d-GalA]8-(1»4)-β-d-GalA-1»OPr, a synthetic model for phytoalexin elictoractive oligogalacturonic acids. Carbohydr Res 167: c1-c7 (1987).

    Article  Google Scholar 

  177. Nakahara Y, Ogawa T: Total synthesis of galactodode-caosiduronic acid, an endogenous phytoalexin elicitor isolated from soybean cell wall. Tetrahedron Lett 30: 87–90 (1989).

    Article  Google Scholar 

  178. Noel KD: Rhizobial polysaccharides required in symbioses with legumes. In: Verma DPS (ed) Molecular Signals in Plant-Microbe Communications, pp. 341–357. CRC Press, Boca Raton, FL (1992).

    Google Scholar 

  179. Nothnagel EA, McNeil M, Albersheim P, Dell A: Host-pathogen interactions. XXII. A galacturonic acid oligosaccharide from plant cell walls elicits phytoalexins. Plant Physiol 71: 916–926 (1983).

    Google Scholar 

  180. Nürnberger T, Nennstiel D, Jabs T, Sacks WR, Hahlbrock K, Scheel D: High-affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78: 449–460 (1994).

    Article  PubMed  Google Scholar 

  181. O'Neil M, Albersheim P, Darvill A: The pectic polysaccharides of primary cell walls. In: Dey PM (ed) Methods in Plant Biochemistry, vol. 2, pp. 415–441. Academic Press, London (1990).

    Google Scholar 

  182. O'Neil RA, Albersheim P, Darvill AG: Purification and characterization of a xyloglucan oligosaccharide-specific xylosidase from pea-seelings. J Biol Chem 264: 20430–20437 (1989).

    PubMed  Google Scholar 

  183. O'Nell RA, White AR, York WS, Darvill AG, Albersheim P: A gas chromatographic-mass spectrometric assay for glycosylases. Phytochemistry 27: 329–333 (1988).

    Article  Google Scholar 

  184. Ossowski P, Pilotti Å, Garegg PJ, Lindberg B: Synthesis of a glucoheptaose and a glucooctaose that elicit phytoalexin accumulation in soybean. J Biol Chem 259: 11337–11340 (1984).

    PubMed  Google Scholar 

  185. Palme K: Molecular analysis of plant signalling elements: relevance of eukaryotic signal transduction models. Int Rev Cytol 132: 223–283 (1992).

    PubMed  Google Scholar 

  186. Parker JE, Hahlbrock K, Scheel D: Different cell-wall components from Phytophthora megasperma f.sp. glycinea elicit phytoalexin production in soybean and parsley. Planta 176: 75–82 (1988).

    Google Scholar 

  187. Parker JE, Schulte W, Hahlbrock K, Scheel D: An extracellular glycoprotein from Phytophthora megasperma f. sp. glycinea elicits phytoalexin synthesis in cultured parsley cells and protoplasts. Mol Plant-Microbe Interact 4: 19–27 (1991).

    Google Scholar 

  188. Pavlova ZN, Ash OA, Vnuchkova VA, Babakov AV, Torgov VI, Nechaev OA, Usov AI, Shibaev VN: Biological activity of a synthetic pentasaccharide fragment of xyloglucan. Plant Sci 85: 131–134 (1992).

    Article  Google Scholar 

  189. Peña-Cortes H, Sanchez-Serrano J, Rocha-Sosa M, Willmitzer L: Systemic induction of proteinase-inhibitor-II gene expression in potato plants by wounding. Planta 174: 84–89 (1988).

    Google Scholar 

  190. Peters BM, Cribbs DH, Stelzig DA: Agglutination of plant protoplasts by fungal cell wall glucans. Science 201: 364–365 (1978).

    Google Scholar 

  191. Pospieszny H, Atabekov JG: Effect of chitosan on the hypersensitive reaction of bean to alfalfa mosaic virus. Plant Sci 62: 29–31 (1989).

    Article  Google Scholar 

  192. Pospieszny H, Chirkov S, Atabekov J: Induction of antiviral resistance in plants by chitosan. Plant Sci 79: 63–68 (1991).

    Article  Google Scholar 

  193. Powell DA, Morris ER, Gidley MJ, Rees DA: Conformations and interactions of pectins II. Influence of residue sequence on chain association in calcium pectate gels. J Mol Biol 155: 517–531 (1982).

    Article  PubMed  Google Scholar 

  194. Pressey R: Oxidized oligogalacturonides activate the oxidation of indoleacetic acid by peroxidase. Plant Physiol 96: 1167–1170 (1991).

    Google Scholar 

  195. Pressey R: Uronic acid oxidase in orange fruit and other plant tissues. Phytochemistry 32: 1375–1379 (1993).

    Article  Google Scholar 

  196. Priem B, Gross KC: Mannosyl- and xylosyl-containing glycans promote tomato (Lycopersicon esculentum Mill.) fruit ripening. Plant Physiol 98: 399–401 (1992).

    Google Scholar 

  197. Priem B, Morvan H, Hafez AMA, Morvan C: Influence of a plant glycan of the oligomannoside type on the growth of flax plantlets. C R Acad Sci Paris III 311: 411–416 (1990).

    Google Scholar 

  198. Priem B, Solokwan J, Wieruszeski J-M, Strecker G, Nazih H, Morvan H: Isolation and characterization of free glycans of the oligomannoside type from the extracellular medium of a plant cell suspension. Glycoconjugate J 7: 121–132 (1990).

    Google Scholar 

  199. Raetz CRH: Biochemistry of endotoxins. Annu Rev Biochem 59: 129–170 (1990).

    Article  PubMed  Google Scholar 

  200. Ren Y-Y, West CA: Elicitation of diterpene biosynthesis in rice (Oryza sativa L.) by chitin. Plant Physiol 99: 1169–1178 (1992).

    Google Scholar 

  201. Reuhs BL, Carlson RW, Kim JS: Rhizobium fredii and Rhizobium meliloti produce 3-deoxy-d-manno-2-octulosonic acid-containing polysaccharides that are structurally analogous to group II K antigens (capsular polysaccharides) found in Escherichia coli. J Bact 175: 3570–3580 (1993).

    PubMed  Google Scholar 

  202. Roberts K: Structures at the plant cell surface. Curr Opin Cell Biol 2: 920–928 (1990).

    PubMed  Google Scholar 

  203. Robertsen B: Elicitors of the production of lignin-like compounds in cucumber hypocotyls. Physiol Mol Plant Path 28: 137–148 (1986).

    Google Scholar 

  204. Robertsen B: Endo-polygalacturonase from Cladosporium cucumerinum elicits lignification in cucumber hypocotyls. Physiol Mol Plant Path 31: 361–374 (1987).

    Google Scholar 

  205. Robertsen B: Pectate lyase from Cladosporium cucumerinum, purification, biochemical properties and ability to induce lignification in cucumber hypocotyls. Mycol Res 94: 595–602 (1989).

    Google Scholar 

  206. Roby D, Toppan A, Esquerré-Tugayé M-T: Cell surfaces in plant-microorganism interactions V. Elicitors of fungal and of plant origin trigger the synthesis of ethylene and of cell wall hydroxyproline-rich glycoprotein in plants. Plant Physiol 77: 700–704 (1985).

    Google Scholar 

  207. Rong L, Carpita NC, Mort A, Gelvin SB: Soluble cell wall compounds from carrot roots induce the picA and pgl loci of Agrobacterium tumefaciens. Mol Plant-Microbe Interact 7: 6–14 (1994).

    Google Scholar 

  208. Ryan CA: Oligosaccharides as recognition signals for the expression of defensive genes in plants. Biochemistry 27: 8879–8883 (1988).

    Google Scholar 

  209. Ryan CA: Oligosaccharide signals: from plant defense to parasite offense. Proc Natl Acad Sci USA 91: 1–2 (1994).

    PubMed  Google Scholar 

  210. Ryan CA, Farmer EE: Oligosaccharide signals in plants: A current assessment. Annu Rev Plant Physiol Plant Mol Biol 42, 651–674 (1991).

    Article  Google Scholar 

  211. Sakai K, Nakanara Y, Ogawa T: Total synthesis of nonasaccharide repeating unit of plant cell wall xyloglucan: an endogenous hormone which regulates cell growth. Tetrahedron Lett 31: 3035–3038 (1990).

    Article  Google Scholar 

  212. Salisbury FB, Ross CW: Plant Physiology. 3rd ed. Wadsworth Publishing Co., Belmont, CA (1985).

    Google Scholar 

  213. Scheel D, Parker JE: Elicitor recognition and signal transduction in plant defense gene activation. Z Naturforsch 45c: 569–575 (1990).

    Google Scholar 

  214. Schlumbaum A, Mauch F, Vögeli U, Boller T: Plant chitinases are potent inhibitors of fungal growth. Nature 324: 365–367 (1986).

    Google Scholar 

  215. Schmidt WE, Ebel J: Specific binding of a fungal glucan phytoalexin elicitor to membrane fractions from soybean Glycine max. Proc Natl Acad Sci USA 84: 4117–4121 (1987).

    Google Scholar 

  216. Sharp JK, Albersheim P, Ossowski P, Pilotti Å, Garegg PJ, Lindberg B: Comparison of the structures and elicitor activities of a synthetic and a mycelial-wall-derived hexa(β-d-glucopyranosyl)-d-glucitol. J Biol Chem 259: 11341–11345 (1984).

    PubMed  Google Scholar 

  217. Sharp JK, McNeil M, Albersheim P: The primary structures of one elicitor-active and seven elicitor-inactive hexa(β-d-glucopyranosyl)-d-glucitols isolated from the mycelial walls of Phytophthora megasperma f.sp. glycinea. J Biol Chem 259: 11321–11336 (1984).

    PubMed  Google Scholar 

  218. Sharp JK, Valent B, Albersheim P: Purification and partial characterization of a β-glucan fragment that elicits phytoalexin accumulation in soybean. J Biol Chem 259: 11312–11320 (1984).

    PubMed  Google Scholar 

  219. Shibuya N, Kaku H, Kuchitsu K, Maliarik MJ: Identification of a novel high-affinity binding site for N-acetylchitooligosaccharide elicitor in the membrane fraction from suspension-cultured rice cells. FEBS Lett 329: 75–78 (1993).

    Article  PubMed  Google Scholar 

  220. Shiraishi T, Saitoh K, Kim HM, Kato T, Tahara M, Oku H, Yamada T, Ichinose Y: Two suppressors, supprescins A and B, secreted by a pea pathogen, Mycosphaerella pinodes. Plant Cell Physiol 33: 663–667 (1992).

    Google Scholar 

  221. Spiro MD, Kates KA, Koller AL, O'Neill MA, Albersheim P, Darvill AG: Purification and characterization of biologically active 1,4-linked α-d-oligogalacturonides after partial digestion of polygalacturonic acid with endopolygalacturonase. Carbohydr Res 247: 9–20 (1993).

    Article  Google Scholar 

  222. Staehelin C, Granado J, Müller J, Wiemken A, Mellor RB, Felix G, Regenass M, Broughton WJ, Boller T: Perception of Rhizobium nodulation factors by tomato cells and inactivation by root chitinases. Proc Natl Acad Sci USA 91: 2196–2200 (1994).

    PubMed  Google Scholar 

  223. Stäb MR, Ebel J: Effects of Ca2+ on phytoalexin induction by fungal elicitor in soybean cells. Arch Biochem Biophys 257: 416–423 (1987).

    PubMed  Google Scholar 

  224. Steffens M, Ettl F, Kranz D, Kindl H: Vanadate mimics effects of fungal cell wall in eliciting gene activation in plant cell cultures. Planta 177: 160–168 (1989).

    Google Scholar 

  225. Strasser H, Hoffmann C, Grisebach H, Matern U: Are polyphosphoinositides involved in signal transduction of elicitor-induced phytoalexin synthesis in cultured plant cells? Z Naturforsch 41c: 717–724 (1986).

    Google Scholar 

  226. Takeuchi Y,Yoshikawa M, Takeba G, Tanaka K, Shibata D, Horino O. Molecular cloning and ethylene induction of mRNA encoding a phytoalexin elicitor-releasing factor, β-1,3-endoglucanase, in soybean. Plant Physiol 93: 673–682 (1990).

    Google Scholar 

  227. Tani M, Fukui H, Shimomura M, Tabata M: Structure of endogenous oligogalacturonides inducing shikonin biosynthesis in Lithospermum cell cultures. Phytochemistry 31: 2719–2723 (1992).

    Article  Google Scholar 

  228. Tepper CS, Anderson AJ: Interactions between pectic fragments and extracellular components from the fungal pathogen Colletotrichum lindemuthianum. Physiol Mol Plant Path 36: 147–158 (1990).

    Google Scholar 

  229. Thain JF, Doherty HM, Bowles DJ, Wildon DC: Oligosaccharides that induce proteinase inhibitor activity in tomato plants cause depolarization of tomato leaf cells. Plant Cell Environ 13: 569–574 (1990).

    Google Scholar 

  230. Velupillai P, Harn DA: Oligosaccharide-specific induction of interleukin 10 production by B220+ cells from schistosome-infected mice: A mechanism for regulation of CD4+ T-cell subsets. Proc Natl Acad Sci USA 91: 18–22 (1994).

    PubMed  Google Scholar 

  231. Verduyn R, Douwes M, van derKlein PAM, Mösinger EM, van derMarel GA, vanBoom JH: Synthesis of a methyl heptaglucoside: analogue of the phytoalexin elicitor from Phytophthora megasperma. Tetrahedron 49: 7301–7316 (1993).

    Article  Google Scholar 

  232. Vreeland V, Morse SR, Robichaux RH, Miller KL, Hua S-ST, Laetsch WM: Pectate distribution and esterification in Dubautia leaves and soybean nodules, studied with a fluorescent hybridization probe. Planta 177: 435–446 (1989).

    Google Scholar 

  233. Waldmann T, Jeblick W, Kauss H: Induced net Ca2+ uptake and callose biosynthesis in suspension-cultured plant cells. Planta 173: 88–95 (1988).

    Google Scholar 

  234. Waldmüller T, Cosio EG, Grisebach H, Ebel J: Release of highly elicitor-active glucans by germinating zoospores of Phytophthora megasperma f.sp. glycinea. Planta 188: 498–505 (1992).

    Article  Google Scholar 

  235. Walker A, Turnbull JE, Gallagher JT: Specific heparan sulfate saccharides mediate the activity of basic fibroblast growth factor. J Biol Chem 269: 931–935 (1994).

    PubMed  Google Scholar 

  236. Walker-Simmons M, Hadwiger L, Ryan CA: Chitosans and pectic polysaccharides both induce the accumulation of the antifungal phytoalexin pisatin in pea pods and antinutrient proteinase inhibitors in tomato leaves. Biochem Biophys Res Commun 110: 194–199 (1983).

    PubMed  Google Scholar 

  237. Walker-Simmons M, Jin D, West CA, Hadwiger L, Ryan CA: Comparison of proteinase inhibitor-inducing activities and phytoalexin elicitor activities of a pure fungal endopolygalacturonase, pectic fragments, and chitosan. Plant Physiol 76: 833–836 (1984).

    Google Scholar 

  238. Walker-Simmons M, Ryan CA: Proteinase inhibitor synthesis in tomato leaves. Induction by chitosan oligomers and chemically modified chitosan and chitin. Plant Physiol 76: 787–790 (1984).

    Google Scholar 

  239. Warneck H, Seitz HU: Inhibition of gibberellic acid-induced elongation-growth of pea epicotyls by xyloglucan oligosaccharides. J Exp Bot 44: 1105–1109 (1993).

    Google Scholar 

  240. Yamada A, Shibuya N, Kodama O, Akatsuka T: Induction of phytoalexin formation in suspension-cultured rice cells by N-acetylchitooligosaccharides. Biosci Biotech Biochem 57: 405–409 (1993).

    Google Scholar 

  241. York WS, Darvill AG, Albersheim P: Inhibition of 2,4-dichlorophenoxyacetic acid-stimulated elongation of pea stem segments by a xyloglucan oligosaccharide. Plant Physiol 75: 295–297 (1984).

    Google Scholar 

  242. York WS, Oates JE, vanHalbeek H, Darvill AG, Albersheim P, Tiller PR, Dell A: Location of the O-acetyl substituents on a nonasaccharide repeating unit of a sycamore extracellular xyloglucan. Carbohydr Res 173: 113–132 (1988).

    Article  PubMed  Google Scholar 

  243. York WS, vanHalbeek H, Darvill AG, Albersheim P: Structural analysis of xyloglucan oligosaccharides by 1H-n.m.r. spectroscopy and fast-atom-bombardment mass spectrometry. Carbohydr Res 200: 9–31 (1990).

    Article  PubMed  Google Scholar 

  244. Yoshikawa M, Keen NT, Wang M-C: A receptor on soybean membranes for a fungal elicitor of phytoalexin accumulation. Plant Physiol 73: 497–506 (1983).

    Google Scholar 

  245. Yoshikawa M, Sugimoto K: A specific binding site on soybean membranes for a phytoalexin elicitor released from fungal cell walls by β-1,3-endoglucanase. Plant Cell Physiol 34: 1229–1237 (1993).

    Google Scholar 

  246. Yoshikawa M, Takeuchi Y, Horino O: A mechanism for ethylene-induced disease resistance in soybean: enhanced synthesis of an elicitor-releasing factor, β-1,3-endoglucanase. Physiol Mol Plant Path 37: 367–376 (1990).

    Google Scholar 

  247. Yoshima H, Takasaki S, Ito-Mega S, Kobata A: Purification of almond emulsin α-l-fucosidase I by affinity chromatography. Arch Biochem Biophys 194: 394–398 (1979).

    PubMed  Google Scholar 

  248. Yoshioka H, Shiraishi T, Yamada T, Ichinose Y, Oku H: Suppression of pisatin production and ATPase activity in pea plasma membranes by orthovanadate, verapamil and a suppressor from Mycosphaerella pinodes. Plant Cell Physiol 31: 1139–1146 (1990).

    Google Scholar 

  249. Young DH, Kauss H: Release of calcium from suspension-cultured Glycine max cells by chitosan, other polycations, and polyamines in relation to effects on membrane permeability. Plant Physiol 73: 698–702 (1983).

    Google Scholar 

  250. Young DH, Köhle H, Kauss H: Effect of chitosan on membrane permeability of suspension-cultured Glycine max and Phaseolus vulgaris cells. Plant Physiol 70: 1449–1454 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Côté, F., Hahn, M.G. Oligosaccharins: structures and signal transduction. Plant Mol Biol 26, 1379–1411 (1994). https://doi.org/10.1007/BF00016481

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00016481

Key words

Navigation