Skip to main content

Defining the Mammalian Peroxisomal Proteome

  • Chapter
  • First Online:
Proteomics of Peroxisomes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 89))

Abstract

The current view on peroxisomes has changed dramatically from being human cell oddities to vital organelles that host several key metabolic pathways. To fulfil over 50 different enzymatic functions, human peroxisomes host either unique peroxisomal proteins or dual-localized proteins. The identification and characterization of the complete peroxisomal proteome in humans is important for diagnosis and treatment of patients with peroxisomal disorders as well as for uncovering novel peroxisomal functions and regulatory modules. Hence, here we compiled a comprehensive list of mammalian peroxisomal and peroxisome-associated proteins by curating results of several quantitative and non-quantitative proteomic studies together with entries in the UniProtKB and Compartments knowledge channel databases. Our analysis gives a holistic view on the mammalian peroxisomal proteome and brings to light potential new peroxisomal and peroxisome-associated proteins. We believe that this dataset, represents a valuable surrogate map of the human peroxisomal proteome.

Eden Yifrach, Sven Fischer—contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

MS:

Mass spectrometry

PTS1:

Peroxisomal targeting signal 1

References

  • Amery L, Sano H, Mannaerts GP, Snider J, Van Looy J, Fransen M, Van Veldhoven PP (2001) Identification of PEX5p-related novel peroxisome-targeting signal 1 (PTS1)-binding proteins in mammals. Biochem J 357:635–646

    Article  CAS  Google Scholar 

  • Antonenkov VD, Pirozhkov SV, Panchenko LF (1985) Intraparticulate localization and some properties of a clofibrate-induced peroxisomal aldehyde dehydrogenase from rat liver. Eur J Biochem 149:159–167

    Article  CAS  Google Scholar 

  • Binder JX, Pletscher-Frankild S, Tsafou K, Stolte C, O’Donoghue SI, Schneider R, Jensen LJ (2014) Compartments: unification and visualization of protein subcellular localization evidence. Database (Oxford). 2014:bau012

    Article  Google Scholar 

  • Christoforou A, Mulvey CM, Breckels LM, Geladaki A, Hurrell T, Hayward PC, Naake T, Gatto L, Viner R, Martinez Arias A, Lilley KS (2016) A draft map of the mouse pluripotent stem cell spatial proteome. Nat Commun 7:8992

    Article  Google Scholar 

  • Effelsberg D, Cruz-Zaragoza LD, Schliebs W, Erdmann R (2016) Pex9p is a new yeast peroxisomal import receptor for PTS1-containing proteins. J Cell Sci 129:4057–4066

    CAS  PubMed  Google Scholar 

  • Forner F, Foster LJ, Campanaro S, Valle G, Mann M (2006) Quantitative proteomic comparison of rat mitochondria from muscle, heart, and liver. Mol Cell Proteomics 5:608–619

    Article  CAS  Google Scholar 

  • Foster LJ, de Hoog CL, Zhang Y, Zhang Y, Xie X, Mootha VK, Mann M (2006) A mammalian organelle map by protein correlation profiling. Cell 125:187–199

    Article  CAS  Google Scholar 

  • Fransen M, Amery L, Hartig A, Brees C, Rabijns A, Mannaerts GP, Van Veldhoven PP (2008) Comparison of the PTS1- and Rab8b-binding properties of Pex5p and Pex5Rp/TRIP8b. Biochim Biophys Acta 1783:864–873

    Article  CAS  Google Scholar 

  • Gronemeyer T, Wiese S, Ofman R, Bunse C, Pawlas M, Hayen H, Eisenacher M, Stephan C, Meyer HE, Waterham HR, Erdmann R, Wanders RJ, Warscheid B (2013) The proteome of human liver peroxisomes: identification of five new peroxisomal constituents by a label-free quantitative proteomics survey. PLoS ONE 8:e57395

    Article  CAS  Google Scholar 

  • Hofhuis J, Schueren F, Notzel C, Lingner T, Gartner J, Jahn O, Thoms S (2016) The functional readthrough extension of malate dehydrogenase reveals a modification of the genetic code. Open Biol 6

    Google Scholar 

  • Islinger M, Li KW, Loos M, Liebler S, Angermuller S, Eckerskorn C, Weber G, Abdolzade A, Volkl A (2010) Peroxisomes from the heavy mitochondrial fraction: isolation by zonal free flow electrophoresis and quantitative mass spectrometrical characterization. J Proteome Res 9:113–124

    Article  CAS  Google Scholar 

  • Islinger M, Luers GH, Li KW, Loos M, Volkl A (2007) Rat liver peroxisomes after fibrate treatment. A survey using quantitative mass spectrometry. J Biol Chem 282:23055–23069

    Article  CAS  Google Scholar 

  • Itzhak DN, Tyanova S, Cox J, Borner GH (2016) Global, quantitative and dynamic mapping of protein subcellular localization. Elife 5

    Google Scholar 

  • Jadot M, Boonen M, Thirion J, Wang N, Xing J, Zhao C, Tannous A, Qian M, Zheng H, Everett JK, Moore DF, Sleat DE, Lobel P (2017) Accounting for protein subcellular localization: a compartmental map of the rat liver proteome. Mol Cell Proteomics 16:194–212

    Article  CAS  Google Scholar 

  • Jean Beltran PM, Mathias RA, Cristea IM (2016) A portrait of the human organelle proteome in space and time during cytomegalovirus infection. Cell Syst 3(361–373):e366

    Google Scholar 

  • Kikuchi M, Hatano N, Yokota S, Shimozawa N, Imanaka T, Taniguchi H (2004) Proteomic analysis of rat liver peroxisome: presence of peroxisome-specific isozyme of Lon protease. J Biol Chem 279:421–428

    Article  CAS  Google Scholar 

  • Mi J, Kirchner E, Cristobal S (2007) Quantitative proteomic comparison of mouse peroxisomes from liver and kidney. Proteomics 7:1916–1928

    Article  CAS  Google Scholar 

  • Oeljeklaus S, Schummer A, Warscheid B (2014) The proteomics toolbox applied to peroxisomes. In: Brocard C, Hartig A (eds) Molecular machines involved in peroxisome biogenesis and maintenance. Springer, Vienna, pp 275–301

    Google Scholar 

  • Patel BN, Mackness MI, Connock MJ (1987) Peroxisomal localization of glucose-6-phosphate dehydrogenase and pyrophosphate-stimulated dihydroxyacetone-phosphate acyltransferase in mouse kidney. Biochem J 244:443–448

    Article  CAS  Google Scholar 

  • Rhodin J (1954) Correlation of ultrastructural organization and function in normal and experimentally changed proximal tubule cells of the mouse kidney. Karolinska Institutet, Stockholm 76

    Google Scholar 

  • Saryi NA, Hutchinson JD, Al-Hejjaj MY, Sedelnikova S, Baker P, Hettema EH (2017) Pnc1 piggy-back import into peroxisomes relies on Gpd1 homodimerisation. Sci Rep 7:42579

    Article  Google Scholar 

  • Schueren F, Lingner T, George R, Hofhuis J, Dickel C, Gartner J, Thoms S (2014) Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals. Elife 3:e03640

    Article  Google Scholar 

  • Shai N, Schuldiner M, Zalckvar E (2016) No peroxisome is an island—peroxisome contact sites. Biochim Biophys Acta 1863:1061–1069

    Article  CAS  Google Scholar 

  • Smith JJ, Aitchison JD (2013) Peroxisomes take shape. Nat Rev Mol Cell Biol 14:803–817

    Article  CAS  Google Scholar 

  • The UniProt Consortium (2017) UniProt: the universal protein knowledge base. Nucleic Acids Res 45:D158–D169

    Article  Google Scholar 

  • Vamecq J, Cherkaoui-Malki M, Andreoletti P, Latruffe N (2014) The human peroxisome in health and disease: the story of an oddity becoming a vital organelle. Biochimie 98:4–15

    Article  CAS  Google Scholar 

  • Wanders RJ, Waterham HR, Ferdinandusse S (2015) Metabolic interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum. Front Cell Dev Biol. 3:83

    PubMed  Google Scholar 

  • Wang M, Herrmann CJ, Simonovic M, Szklarczyk D, von Mering C (2015) Version 4.0 of PaxDb: Protein abundance data, integrated across model organisms, tissues, and cell-lines. Proteomics 15:3163–3168

    Article  CAS  Google Scholar 

  • Waterham HR, Ferdinandusse S, Wanders RJ (2016) Human disorders of peroxisome metabolism and biogenesis. Biochim Biophys Acta 1863:922–933

    Article  CAS  Google Scholar 

  • Wiese S, Gronemeyer T, Ofman R, Kunze M, Grou CP, Almeida JA, Eisenacher M, Stephan C, Hayen H, Schollenberger L, Korosec T, Waterham HR, Schliebs W, Erdmann R, Berger J, Meyer HE, Just W, Azevedo JE, Wanders RJ, Warscheid B (2007) Proteomics characterization of mouse kidney peroxisomes by tandem mass spectrometry and protein correlation profiling. Mol Cell Proteomics 6:2045–2057

    Article  CAS  Google Scholar 

  • Wiese S, Gronemeyer T, Brites P, Ofman R, Bunse C, Renz C, Meyer HE, Wanders DRJA, Warscheid B (2012) Comparative profiling of the peroxisomal proteome of wildtype and Pex7 knockout mice by quantitative mass spectrometry. Int J Mass Spectrom 312:30–40

    Article  CAS  Google Scholar 

  • Yifrach E, Chuartzman SG, Dahan N, Maskit S, Zada L, Weill U, Yofe I, Olender T, Schuldiner M, Zalckvar E (2016) Characterization of proteome dynamics during growth in oleate reveals a new peroxisome-targeting receptor. J Cell Sci 129:4067–4075

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Ronald Wanders and Hans Waterham for helpful discussions and Christian D. Peikert for help with extracting data from public databases. This work was supported by an ERC CoG 646604 Peroxisystem grant, the Deutsche Forschungsgemeinschaft (SFB 1190, FOR 1905, RTG 2202) and the Excellence Initiative of the German Federal & State Governments (EXC 294 BIOSS). MS is an incumbent of the Dr. Gilbert Omenn and Martha Darling Professorial Chair in Molecular Genetics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Silke Oeljeklaus , Maya Schuldiner , Einat Zalckvar or Bettina Warscheid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yifrach, E., Fischer, S., Oeljeklaus, S., Schuldiner, M., Zalckvar, E., Warscheid, B. (2018). Defining the Mammalian Peroxisomal Proteome. In: del Río, L., Schrader, M. (eds) Proteomics of Peroxisomes. Subcellular Biochemistry, vol 89. Springer, Singapore. https://doi.org/10.1007/978-981-13-2233-4_2

Download citation

Publish with us

Policies and ethics