Skip to main content

Chiral liquid chromatography: past and present

  • Chapter
Chiral Liquid Chromatography

Abstract

Around 1812, the French physicist Biot discovered the existence of optical activity in crystals of α-quartz(O’Loane, 1980). Credit for the first resolution of enantiomers from a racemate goes to Louis Pasteur who, in 1848, separated manually the non-identical crystals of the enantiomers of sodium ammonium tartrate (Pasteur, 1848). In 1874, Le Bel and Van’t Hoff independently proposed the ‘asymmetric carbon atom’ to account for the chirality of organic compounds. Le Bel (1874) favoured a square pyramidal arrangement of substituents around an apical carbon atom whereas Van’t Hoff (1874) correctly postulated a tetrahedral arrangement around a central carbon atom. Not surprisingly, early attempts to obtain resolution of racemates utilized readily-available, naturally-occurring chiral materials such as wool, silk, quartz and polysaccharides such as starch or cellulose. At the turn of the century, Wilstätter (1904) postulated that it should be possible to resolve racemic dyes in solution by enantioselective adsorption onto wool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allenmark, S. (1986) Optical resolution by liquid chromatography on immobilized bovine serum albumin. J. Liq. Chromatogr.9, 425–442.

    Article  Google Scholar 

  • Allenmark, S., B. Bomgren and H. Boren (1982) Direct resolution of enantiomers by liquid affinity chromatography on albumin-agarose under isocratic conditions. J. Chromatogr.237, 473–477.

    Article  Google Scholar 

  • Allenmark, S., B. Bomgren and H. Boren (1986) Enantioselective microbial degradation of some racemates studied by chiral liquid chromatography. Enzyme Microb. Technol.8, 404–408.

    Article  Google Scholar 

  • Armstrong, D.W. (1987) Optical isomer separation by liquid chromatography. Anal. Chem.59, 84A-91A.

    Article  Google Scholar 

  • Armstrong, D.W. and W.J. DeMond (1984) Cyclodextrin bonded phases for the liquid chromatographic separation of optical, geometrical, and structural isomers. J. Chromatogr. Sci.22, 411–415.

    Google Scholar 

  • Aubel, M.T. and L.B. Rogers (1987) Effects of pretreatment on the enantioselectivity of silica- bound proteins used as high-performance liquid chromatographic stationary phases. J. Chromatogr.408, 99–113.

    Article  Google Scholar 

  • Baczuk, R.J., G.K. Landram, R.J. Dubois and H.C. Dehm (1971) Liquid chromatographic resolution of racemic β-3, 4-dihydroxyphenylalanine. J. Chromatogr.60, 351–361.

    Article  Google Scholar 

  • Blaschke, G. (1974) Chromatographic racemischer Mandelsäure an Polyacrylsäure-estern und -amiden optisch aktiver Ephedrinderivate. Chem. Ber.107, 237–252.

    Article  Google Scholar 

  • Blaschke, G. (1980) Chromatographische Racemattrennung. Angew. Chem.92, 14–25.

    Article  Google Scholar 

  • Brode, W.R. and R. Adams (1926) Optically active dyes. III. Physical properties, dyeing reactions and mechanism of dyeing. J. Amer. Chem. Soc.48, 2193–2201.

    Article  Google Scholar 

  • Cram, D.J., R.C. Helgeson, L.R. Sousa, J.M. Timko, M. Newcomb, P. Moreau, F. De Jong, G.W. Gokel, D.H. Hoffman, L.A. Domeier, S.C. Peacock, K. Madan and L. Kaplan (1975) Chiral recognition in complexation of guests by designed host molecules. Pure Appl. Chem.43, 327–349.

    Article  Google Scholar 

  • Dalgliesh, C.E. (1952) The optical resolution of aromatic amino-acids on paper chromatograms. J. Chem. Soc., 3490–3942.

    Google Scholar 

  • Däppen, R., H. Arm and V.R. Meyer (1986) Applications and limitations of commercially available chiral stationary phases for high-performance liquid chromatography. J. Chromatogr.373, 1–20.

    Article  Google Scholar 

  • Davankov, V.A. (1980) Resolution of racemates by ligand exchange chromatography. In Advances in Chromatography, ed. J.C. Giddings, E. Grushka and P.R. Brown, Marcel Dekker, New York, 18, chapter 4.

    Google Scholar 

  • Davankov, V.A. and A.A. Kurganov (1983) The role of achiral sorbent matrix in chiral recognition of amino acid enantiomers in ligand-exchange chromatography. Chromatographia 17, 686–690.

    Article  Google Scholar 

  • Davankov, V.A. and S.V. Rogozhin (1971) Ligand chromatography as a novel method for the investigation of mixed complexes: stereoselective effects in α-amino acid copper (II) complexes. J. Chromatogr.60, 280–283.

    Article  Google Scholar 

  • Davankov, V.A., A.A. Kurganov and A.S. Bochkov (1983) Resolution of racemates by high- performance liquid chromatography. In Advances in Chromatography, ed. J.C. Giddings, E. Grushka and P.R. Brown, Marcel Dekker, New York, 22, chapter 3.

    Google Scholar 

  • Debowski, J., D. Sybilska and J. Jurczak (1982) β-Cyclodextrin as a chiral component of the mobile phase for separation of mandelic acid into enantiomers in reversed-phase systems of high-performance liquid chromatography. J. Chromatogr.237, 303–306.

    Article  Google Scholar 

  • Dickie, F.H. (1949) The preparation of specific adsorbents. Proc. Nat. Acad. Sci.35, 227–229.

    Article  Google Scholar 

  • Easson, L.H. and E. Stedman (1933) Studies on the relationship between chemical constitution and physiological action. V. Molecular dissymmetry and physiological activity. Biochem. J.27, 1257–1266.

    Google Scholar 

  • Gil-Av, E., B. Feibush and R. Charles-Sigler (1966) Separation of enantiomers by gas liquid chromatography with an optically active stationary phase. Tet. Letts. 1009–1015.

    Google Scholar 

  • Henderson, G.M. and H.G. Rule (1939) A new method of resolving a racemic compound. J. Chem. Soc. 1568–1573.

    Google Scholar 

  • Hermansson, J. (1983) Direct liquid chromatographic resolution of racemic drugs using α1acid glycoprotein as the chiral stationary phase. J. Chromatogr.269, 71–80.

    Article  Google Scholar 

  • Hesse, G. and R. Hagel (1973) Eine vollständige Racemattrennung durch Elutions- Chromatographie an Cellulose-tri-acetat. Chromatographia 6, 277–280.

    Article  Google Scholar 

  • Ingersoll, A.W. and R. Adams (1922) Optically active dyes. J. Amer. Chem. Soc.44, 2930–2937.

    Article  Google Scholar 

  • Karagunis, G. and G. Coumoulos (1938) A new method of resolving a racemic compound. Nature 142, 162–163.

    Article  Google Scholar 

  • Klemm, L.H. and D. Reed (1960) Optical resolution by molecular complexation chromatography. J. Chromatogr.3, 364–368.

    Article  Google Scholar 

  • Knox, J.H. and J. Jurand (1982) Separation of optical isomers by zwitterion-pair chromatography. J. Chromatogr.234, 222–224.

    Article  Google Scholar 

  • Konrad, G. and H. Musso (1984) Ueber die enantioselektive Adsorption chiraler Azofarbstoffe an Seide, Wolle, Stärke und Cellulose. Chem. Ber.117, 423–426.

    Article  Google Scholar 

  • Konrad, G. and H. Musso (1986) Ueber die Enantiomerentrennung durch Chromatographie an natürlichen Polymeren. Liebigs Ann. Chem. 1956–1967.

    Google Scholar 

  • Kotake, M., T. Sakan, N. Nakamura and S. Senoh (1951) Resolution into optical isomers of some amino acids by paper chromatography. J. Amer. Chem. Soc.73, 2973–2974.

    Article  Google Scholar 

  • Krull, I.S. (1978) The liquid-chromatographic resolution of enantiomers. In Advances in Chromatography, ed. J.C. Giddings, E. Grushka and P.R. Brown, Marcel Dekker, New York, 16, chapter 6.

    Google Scholar 

  • Le Bel, J.A. (1874) Sur les relations qui existent entre les formules atomiques des corps organiques et le pouvoir rotatoire de leurs dissolutions. Bull. Soc. Chim.22, 337–347.

    Google Scholar 

  • LePage, J.N., W. Lindner, G. Davies, D.E. Seitz and B.L. Karger (1979) Resolution of the optical isomers of dansyl amino acids by reversed phase liquid chromatography with optically active metal chelate additives. Anal. Chem.51, 433–435.

    Article  Google Scholar 

  • Lindner, W.F. (1982) Resolution of optical isomers by gas and liquid chromatography. In Chemical Derivatisation in Analytical Chemistry, ed. F. Lawrence and R.W. Frei, Plenum Press, New York, chapter 4.

    Google Scholar 

  • Lindner, W., J.N. LePage, G. Davies, D.E. Seitz and B.L. Karger (1979) Reversed-phase separation of optical isomers of dns-amino acids and peptides using chiral metal chelate additives. J. Chromatogr. 185, 323–344.

    Article  Google Scholar 

  • Lochmüller, C.H. and R.R. Ryall (1978) Direct resolution of enantiomers by high-performance liquid chromatography on a bonded chiral stationary phase. J. Chromatogr.150, 511–514.

    Article  Google Scholar 

  • McMenamy, R.H. and J.L. Oncley(1958) Thespecific binding of L-tryptophan to serum albumin. J. Biol. Chem.233, 1436–1447.

    Google Scholar 

  • Majors, R.E. and L.B. Rogers (1969) Effects of structural changes of the pretreating agent on adsorption by modified silica adsorbents. Anal. Chem.41, 1058–1065.

    Article  Google Scholar 

  • Mikes, F., G. Boshart and E. Gil-Av (1976) Resolution of optical isomers by high-performance liquid chromatography, using coated and bonded chiral charge-transfer complexing agents as stationary phases. J. Chromatogr.122, 205–221.

    Article  Google Scholar 

  • Ogston, A.G. (1948) Interpretation of experiments on metabolic processes, using isotopic tracer elements. Nature, 963.

    Google Scholar 

  • Okamoto, Y. and K. Hatada (1986) Resolution of enantiomers by HPLC on optically active poly(triphenylmethyl methacrylate). J. Liq. Chromatogr.9, 369–384.

    Article  Google Scholar 

  • Okamoto, Y., K. Suzuki, K. Ohta, K. Hatada and H. Yuki (1979) Optically active poly(triphenylmethyl methacrylate) with one-handed helical conformation. J. Amer. Chem. Soc.101, 4763–4765.

    Article  Google Scholar 

  • Okamoto, Y., R. Aburatani, S. Miura and K. Hatada (1987) Chiral stationary phases for HPLC: Cellulose tris (3,5-dimethylphenylcarbamate) and tris (3,5-dichlorophenylcarbamate) chemically bonded to silica gel. J. Liq. Chromatogr.10, 1613–1628.

    Article  Google Scholar 

  • O’Loane, J.K. (1980) Optical activity in small molecules, nonenantiomorphous crystals, and nematic liquid crystals. Chem. Rev.80, 41–61.

    Article  Google Scholar 

  • Pauling, L. (1940) A theory of the structure and process of formation of antibodies. J. Amer. Chem. Soc.62, 2643–2657.

    Article  Google Scholar 

  • Pasteur, L. (1848) Recherches sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et le sens de la polarisation rotatoire. Ann. Chim. Phys.24, 442–459.

    Google Scholar 

  • Pettersson, C. and G. Schill (1981) Separation of enantiomeric amines by ion-pair chromatography. J. Chromatogr.204, 179–183.

    Article  Google Scholar 

  • Pettersson, C., T. Arvidsson, A.-L. Karlsson and I. Marie (1986) Chromatographic resolution of enantiomers using albumin as complexing agent in the mobile phase. J. Pharm. Biomed. Anal.4, 221–235.

    Article  Google Scholar 

  • Pirkle, W.H. and B.C. Hamper (1987) The direct preparative resolution of enantiomers by liquid chromatography on chiral stationary phases. In Preparative Liquid Chromatography, ed. B.A. Bidlingmeier, Elsevier, Amsterdam, chapter 7.

    Google Scholar 

  • Pirkle, W.H. and D.W. House (1979) Chiral high-pressure liquid chromatographic stationary phases. 1. Separation of the enantiomers of sulfoxides, amines, amino acids, alcohols, hydroxy acids, lactones, and mercaptans. J. Org. Chem.44, 1957–1960.

    Article  Google Scholar 

  • Pirkle, W.H. and T.C. Pochapsky (1987) Chiral stationary phases for the direct LC separation of enantiomers. In Advances in Chromatography, ed. J.C. Giddings, E. Grushka and P.R. Brown, Marcel Dekker, New York, 27, chapter 3.

    Google Scholar 

  • Pirkle, W.H. and D.L. Sikkenga (1977) The use of chiral solvation agents for nuclear magnetic resonance determination of enantiomeric purity and absolute configuration of lactones. Consequences of three-point interactions. J. Org. Chem.42, 1370–1374.

    Article  Google Scholar 

  • Pirkle, W.H., D.W. House and J.M. Finn (1980) Broad spectrum resolution of optical isomers using chiral high-performance liquid chromatographic bonded phases. J. Chromatogr. 192, 143–158.

    Article  Google Scholar 

  • Porter, C.W. and H.K. Ihrig (1923) Asymmetric dyes. J. Amer. Chem. Soc.45, 1990–1993.

    Article  Google Scholar 

  • Prelog, V. and P. Wieland (1944) Ueber die Spaltung der Tröger’schen Base in optische Antipoden, ein Beitrag zur Stereochemie des dreiwertigen Stickstofïes. Helv. Chim. Acta 27, 1127–1134.

    Article  Google Scholar 

  • Pryde, A. and M.T. Gilbert (1979) Applications of High Performance Liquid Chromatography. Chapman and Hall, London.

    Google Scholar 

  • Snyder, L.R. and J.J. Kirkland (1974) Introduction to Modern Liquid Chromatography, Wiley- Interscience, New York.

    Google Scholar 

  • Sogah, G.D.Y. and D.J. Cram (1976) Total chromatographic optical resolutions of α-amino acid and ester salts through chiral recognition by a host covalently bound to polystyrene resin. J. Amer. Chem. Soc.98, 3038–3041.

    Article  Google Scholar 

  • Sousa, L.R., G.D.Y. Sogah, D.H. Hoffmann and D.J. Cram (1978) Host-guest complexation. 12. Total optical resolution of amine and amino ester salts by chromatography. J. Amer. Chem. Soc.100, 4569–4576.

    Article  Google Scholar 

  • Stewart, K.K. and R.F. Doherty (1973) Resolution of DL-tryptophan by affinity chromatography on bovine serum albumin-agarose columns. Proc. Nat. Acad. Sci.70, 2850–2852.

    Article  Google Scholar 

  • Tsuchida, R., M. Kobayashi and A. Nakamura (1936) The configuration of chlorobisdimethylglyoximoammine-cobalt. Bull. Chem. Soc. Jap.11, 38–40.

    Article  Google Scholar 

  • Van’t Hoff, J.H. (1874) Sur les formules de structure dans l’espace. Arch. Nederl. Sci. Exactes Natur.9, 445–454.

    Google Scholar 

  • Wilstätter, R. (1904) Üeber einen Versuch zur Theorie des Färbens. Ber. Deutsch. Chem. Ges.37, 3758–3760.

    Article  Google Scholar 

  • Wulff, G. and A. Sarhan (1972) The use of polymers with enzyme-analogous structures for the resolution of racemates. Angew. Chem. Intnl. Ed.11, 341.

    Google Scholar 

  • Wulff, G., H.-G. Poll and M. Minarik (1986) Enzyme-analogue built polymers. XIX. Racemic resolution on polymers containing chiral cavities. J. Liq. Chromatogr.9, 385–405.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Chapman & Hall

About this chapter

Cite this chapter

Pryde, A. (1989). Chiral liquid chromatography: past and present. In: Lough, W.J. (eds) Chiral Liquid Chromatography. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0861-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0861-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6875-8

  • Online ISBN: 978-94-009-0861-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics