Skip to main content

Physiology of Poikilohydric Plants

  • Chapter

Part of the book series: Progress in Botany ((BOTANY,volume 59))

Abstract

The capability of cells, organs or whole organisms to survive cycles of dehydration and rehydration has evolved in most systematic groups of the plant kingdom. Interestingly, even in the systematic group of the angiosperms, where the sporophytic plant body is usually characterized by high sensitivity towards dehydration, specific structures such as seeds or pollen may undergo excessive water loss without losing viability. Both the distribution of dehydration tolerance throughout the plant kingdom and the occurrence of tolerant structures in most species suggest that many or most structural and metabolic properties required for dehydration tolerance are present in all plants and that only some changes in the developmental program are required to realize the trait of resurrecting a dried plant body. If this provocative conclusion is correct, the question arises why only a limited number of plants have relied on the maintenance of dehydration tolerance. The likely reason is that dehydration tolerance, particularly in higher plants, is advantageous only under very extreme growth conditions but simultaneously poses a severe selective disadvantage in competition for growth, reproduction and spreading under most other growth conditions. In this context, it is important to note that even most resurrection plants must first undergo a period of moderate water loss in order to develop full dehydration tolerance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartels D, Schneider K, Terstappen G, Piatkowski D, Salamini F (1990) Molecular cloning of abscisic acid-modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181: 27–34

    Article  CAS  Google Scholar 

  • Bartels D, Hanke C, Schneider K, Michel D, Salamini F (1992) A desiccation-related Elip-like gene from the resurrection plant Craterostigma plantagineum is regulated by light and ABA. EMBO J 11: 2771–2778

    PubMed  CAS  Google Scholar 

  • Bartels D, Furini A, Bockel C, Frank W, Salamini F (1996) Gene expression during dehydration stress in the resurrection plant Craterostigma plantagineum. In: Grillo S, Leone A (eds) Physical stress in plants. Springer, Berlin Heidelberg New York, pp 117–122

    Chapter  Google Scholar 

  • Barthlott W, Porembski S (1996) Ecology and morphology of Blossfeldia liliputana (Cactaceae): a poikilohydric and almost astomate succulent. Bot Acta 109: 161–166

    Google Scholar 

  • Bewley JD (1979) Physiological aspects of desiccation tolerance. Annu Rev Plant Physiol 30: 195–238

    Article  CAS  Google Scholar 

  • Bewley JD (1995) Physiological aspects of desiccation tolerance — a retrospect. Int J Plant Sci 156: 393–403

    Article  Google Scholar 

  • Bianchi G, Gamba A, Murelli C, Salamini F, Bartels D (1991) Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. Plant J 1: 355–359

    Article  Google Scholar 

  • Bianchi G, Gamba A, Murelli C, Salamini F, Bartels D (1992) Low molecular weight solutes in desiccated and ABA-treated calli and leaves of Craterostigma plantagineum. Phytochemistry 31: 1917–1922

    Article  CAS  Google Scholar 

  • Bianchi G, Gamba A, Limiroli CR, Pozzi N, Elster R, Salamini F, Bartels D (1993) The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia. Physiol Plant 87: 223–226

    Article  CAS  Google Scholar 

  • Blackman SA, Obendorf RL, Leopold AC (1992) Maturation proteins and sugars in desiccation tolerance of developing soybean seeds. Plant Physiol 100: 225–230

    Article  PubMed  CAS  Google Scholar 

  • Bruni F, Leopold AC (1991) Glass transitions in soybean seed. Relevance to anhydrous biology. Plant Physiol 96: 660–663

    Article  PubMed  CAS  Google Scholar 

  • Casper C, Eickmeyer WG, Osmond CB (1993) Changes of fluorescence and xanthophyll pigments during dehydration in the resurrection plant Selaginella lepidophylla in low and medium light intensities. Oecologia 94: 528–533

    Article  Google Scholar 

  • Chaves MM (1991) Effects of water deficits on carbon assimilation. J Exp Bot 42: 1–16

    Article  CAS  Google Scholar 

  • Close TJ, Fenton RD, Yang A, Asghar R, DeMason DA, Crone DE, Meyer NC, Moonan F (1993) Dehydrins: the protein. In: Cole TJ, Bray EA (eds) Plant responses to cellular dehydration during environmental stress. American Society of Plant Physiology, Rockville, pp 104–118

    Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54: 579–599

    Article  PubMed  CAS  Google Scholar 

  • Dhindsa RS (1991) Drought stress, enzymes of glutathione metabolism, oxidation injury, and protein synthesis in Tortula ruralis. Plant Physiol 95: 648–651

    Article  PubMed  CAS  Google Scholar 

  • Dietz K-J, Heber U (1983) Carbon dioxide gas exchange and the energy status of leaves of Primulapalinura underwater stress. Planta 159: 349–356

    Article  Google Scholar 

  • Dietz K-J, Keller F (1996) Transient storage of photosynthates in leaves. In: Pessarakli M (ed) Handbook of photosynthesis. Dekker, New York, pp 717–737

    Google Scholar 

  • Dinter K (1918) Botanische Reisen in Deutsch-Südwest-Afrika. Feddes Rep Bein 3: 1–169

    Google Scholar 

  • Downton WJS, Loveys BR, Grant WJR (1988) Stomatal closure fully accounts for the inhibition of photosynthesis by abscisic acid. New Phytol 108: 263–266

    Article  CAS  Google Scholar 

  • Dure L III (1993) Structural motifs in LEA proteins. In: Close TJ, Bray EA (eds) Plant responses to cellular dehydration during environmental stress. ASPP series, vol 10. American Society of Plant Physiology, Rockville, pp 91–103

    Google Scholar 

  • Dure L III, Greenway SC, Galau GA (1981) Developmental biochemistry of cotton seed embryogenesis and germination. Biochemistry 20: 4162–4168

    Article  PubMed  CAS  Google Scholar 

  • Fischer E (1992) Systematik der afrikanischen Lindernieae (Scrophulariaceae). Steiner, Stuttgart

    Google Scholar 

  • Furini A, Koncz C, Salamini F, Bartels D (1994) Agrobacterium-mediaLted transformation of the desiccation tolerant plant Craterostigma plantagineum. Plant Cell Rep 14: 102–106

    Article  CAS  Google Scholar 

  • Furini A, Parcy F. Salamini F, Bartels D (1996) Differential regulation of two ABA-inducible genes from Craterostigma plantagineum in transgenic Arabidopsis plants. Plant Mol Biol 30: 343–349

    Article  PubMed  CAS  Google Scholar 

  • Gaff DF (1972) Drought resistance in Welwitschia mirabilis HOOKER fil. Dinteria 7: 3–7

    Google Scholar 

  • Gaff DF (1977) Desiccation tolerant vascular plants of southern Africa. Oecologia 31: 95–104

    Article  Google Scholar 

  • Gaff DF (1980) Protoplasmic tolerance of extreme water stress. In: Turner NC, Kramer PJ (eds) Adaptations of plants to water and high temperature stress. Wiley, New York, pp 207–231

    Google Scholar 

  • Gaff DG (1987) Desiccation tolerant plants in South America. Oecologia 74: 133–136

    Article  Google Scholar 

  • Gaff DF (1989) Responses of desiccation tolerant resurrection plants to water stress. In: Kreeb KH, Richter H, Hinckley TM (eds) Structural and functional responses to environmental stresses: water shortage. SBP Academic Publishing, The Hague, pp 255–268

    Google Scholar 

  • Gaff DF, Churchill DM (1976) Borya nitida labill. an Australien species in the Liliaceae with desiccation-tolerant leaves. Aust J Bot 24: 209–24

    Article  Google Scholar 

  • Gaff DF, Giess W (1986) Drought resistance in water plants in rock pools of southern Africa. Dinteria 18: 17–36

    Google Scholar 

  • Gaff DF, Loveys BR (1984) Abscisic acid content and effects during dehydration of detached leaves of desiccation tolerant plants. J Exp Bot 35: 1350–1358

    Article  CAS  Google Scholar 

  • Gaff DF, McGregor GR (1979) The effect of dehydration and rehydration on the nitrogen content of various fractions from resurrection plants. Biol Plant 21: 92–99

    Article  CAS  Google Scholar 

  • Gaff DF, Wood JN (1988) Salt-resistant desiccation tolerant grasses. Proceedings of the International Congress on Plant Physiology, New Delhi, pp 984–988

    Google Scholar 

  • Gaff DF, Ziegler H, Zimmermann U (1985) Electrofusion of protoplasts from desiccation tolerant grass species and desiccation sensitive grass protoplasts. J Plant Physiol 120: 375–380

    Google Scholar 

  • Gamble PE, Burke JJ (1984) Effect of water stress on the chloroplast antioxidant system. Alteration in glutathione activity. Plant Physiol 76: 615–621

    Article  PubMed  CAS  Google Scholar 

  • Guerrero FD, Jones JT, Mullet JE (1990) Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted: sequence and expression of three inducible genes. Plant Mol Biol 15: 11–26

    Article  PubMed  CAS  Google Scholar 

  • Guiltan MJ, Marcotte WR Jr, Quatrano RS (1990) A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250: 267–271

    Article  Google Scholar 

  • Harten JB, Eickmeyer WG (1986) Enzyme dynamics of the resurrection plant Selaginella lepidophylla (HOOK & GREV) SPRING during rehydration. Plant Physiol 82: 61–64

    Article  PubMed  CAS  Google Scholar 

  • Heil H (1924) Chamaegigas intrepidus Dtr., eine neue Auferstehungspflanze. Beih Bot Zentralbl 41: 41–50

    Google Scholar 

  • Hellwege EM, Dietz K-J, Volk OH, Härtung W (1994) Abscisic acid and the induction of desiccation tolerance in the extremely xerophilic liverwort Exormotheca holstii. Planta 194: 525–531

    Article  CAS  Google Scholar 

  • Hellwege EM, Dietz K-J, Härtung W (1996) Abscisic acid causes changes in gene expression involved in the induction of the landform of the liverwort Riccia fluitans. Planta 198: 423–432

    Article  PubMed  CAS  Google Scholar 

  • Hideg E (1996) Free radical production in photosynthesis under stress conditions. In: Pessarakli M (ed) Handbook of photosynthesis. Dekker, New York, pp 911–930

    Google Scholar 

  • Hollenbach B, Dietz K-J (1995) Molecular cloning of emip, a member of the major intrinsic protein gene family, preferentially expressed in epidermal cells of barley leaves. Bot Acta 108: 425–431

    CAS  Google Scholar 

  • Iljin WS (1930) Die Ursachen der Resistenz von Pflanzenzellen gegen Austrocknung. Protoplasma 10: 379–414

    Article  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 377–403

    Article  PubMed  CAS  Google Scholar 

  • Irmscher E (1912) Über die Resistenz der Laubmoose gegen Austrocknung und Kälte. Jahrb Wiss Bot 50: 387–449

    Google Scholar 

  • Iturriaga G, Schneider K, Salamini F, Bartels D (1992) Expression of desiccation-related proteins from the resurrection plant Craterostigma plantagineum in transgenic tobacco. Plant Mol Biol 20: 555–558

    Article  PubMed  CAS  Google Scholar 

  • Jagtap V, Bhargava S (1995) Variation in the antioxidant metabolism of drought tolerant and drought sensitive varieties of Sorghum bicolor (L.) MOENCH. exposed to high light, low water and high temperature stress. J Plant Physiol 145: 195–197

    CAS  Google Scholar 

  • Kaiser WM (1987) Effects of water deficit on photosynthetic capacity. Physiol Plant 71: 142–149

    Article  CAS  Google Scholar 

  • Kerr PS (1993) Soybean products with improved carbohydrate composition and soybean plants. DuPont de Nemours, PCT Pat US92/08958

    Google Scholar 

  • Kishor PBK, Hong Z, Miao G-H, Hu CAA, Verma DPS (1995) Overexpression of pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108: 1387–1394

    PubMed  CAS  Google Scholar 

  • Kuang J, Gaff DF, Gianello RD, Blomstedt CK, Neale AD, Hamill JD (1995) Changes of in vivo protein complements in drying leaves of the desiccation-tolerant grass Sporobolus stapfianus and the desiccation-sensitive grass Sporobolus pyramidalis. Aust J Plant Physiol 22: 1027–1034

    Article  Google Scholar 

  • Kuo TM, Van Middlesworth JF, Wolf WJ (1988) Content of raffinose oligosaccharides and sucrose in various plant seeds. J Agric Food Chem 36: 32–36

    Article  CAS  Google Scholar 

  • Lers A, Levy H, Zamir A (1991) Coregulation of a gene homologous to early light induced genes in higher plants and beta-carotene biosynthesis in the alga Dunaliella bardawil J Biol Chem 266: 13698–13705

    PubMed  CAS  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses, vol 2. Water, radiation, salt and other stresses. Academic Press, New York

    Google Scholar 

  • Lösch R (1996) Plant water relations: metabolic responses to water deficit and surplus. Prog Bot 57: 17–31

    Google Scholar 

  • Michel D, Salamini F, Bartels D, Dale P, Baga M, Szalay A (1993) Analysis of a desiccation and ABA-responsive promotor isolated from the resurrection plant Craterostigma plantagineum. Plant J 4: 29–40

    Article  PubMed  CAS  Google Scholar 

  • Michel D, Furini A, Salamini F, Bartels D (1994) Structure and regulation of an ABA- and desiccation-responsive gene from the resurrection plant Craterostigma plantagineum. Plant Mol Biol 24: 549–560

    Article  PubMed  CAS  Google Scholar 

  • Müller MAN (1985) Gräser Südafrikas/Namibias. Meinert, Windhoek

    Google Scholar 

  • Navari-Izzo F, Pinzino C, Quartacci MF, Sgherri CLM, Izzo R (1994) Intracellular membranes: kinetics of superoxide production and changes in thylakoids of resurrection plants upon dehydration and rehydration. Proc Soc Edinburgh [3] 102: 187–191

    Google Scholar 

  • Navari-Izzo F, Ricci F, Vazzana C, Quartacci MF (1995) Unusual composition of thylakoid membranes of the resurrection plant Boea hygroscopica: changes in lipids upon dehydration and resurrection. Physiol Plant 94: 135–142

    Article  CAS  Google Scholar 

  • Nelson D, Salamini F, Bartels D (1994) Abscisic acid promotes novel DNA-binding activity to a desiccation-related promotor of Craterostigma plantagineum. Plant J 5: 451–458

    Article  PubMed  CAS  Google Scholar 

  • Nugent G, Gaff DF (1989) Electrofusion of protoplasts from desiccation tolerant species and desiccation sensitive species of grasses. Biochem Physiol Pflanzen 185: 93–97

    Google Scholar 

  • Okamuro JK, Goldberg RB (1989) Regulation of plant gene expression. In: Macus A (ed) The biochemistry of plants, vol 15. Academic Press, New York, pp 1–82

    Google Scholar 

  • Oliver MJ, Bewley JD (1984) Plant desiccation and protein synthesis. VI. Changes in protein synthesis elicited by desiccation of the moss Tortula ruralis are affected at the translational level. Plant Physiol 74: 923–927

    Article  PubMed  CAS  Google Scholar 

  • Price AH, Hendry GAF (1991) Iron-catalysed oxygen radical formation and its possible contribution to drought damage in nine native grasses and three cereals. Plant Cell Environ 14: 477–484

    Article  CAS  Google Scholar 

  • Puliga S, Vazzana C, Davies WJ (1996) Control of crops leaf growth by chemical and hydraulic influences. J Exp Bot 47: 29–538

    Article  Google Scholar 

  • Reynolds TL, Bewley JD (1993a) Characterization of protein synthetic changes in a desiccation tolerant fern, Polypodium virginianum. Comparison of the effects of drying and rehydration, and abscisic acid. J Exp Bot 44: 921–928

    Article  CAS  Google Scholar 

  • Reynolds TL, Bewley JD (1993b) Abscisic acid enhances the ability of the desiccation tolerant fern Polypodium virginianum to withstand drying. J Exp Bot 44: 1771–1779

    Article  CAS  Google Scholar 

  • Saccardy K, Cornic G, Brulfert J, Reuss A (1996) Effect of drought stress on net CO2-uptake by Zea leaves. Planta 199: 589–595

    Article  CAS  Google Scholar 

  • Schiller P, Härtung W, Ratcliffe RG (1997a) A stress-physiological 31P-NMR study of the aquatic resurrection plant Chamaegigas intrepidus. J Exp Bot 48:suppl41

    Google Scholar 

  • Schiller P, Heilmeier H, Hartung W (1997b) Abscisic acid (ABA) relations in the aquatic resurrection plant Chamaegigas intrepidus under naturally fluctuating environmental conditions. New Phytol (in press)

    Google Scholar 

  • Schmidt JE, Kaiser WM (1987) Response of the succulent leaves of Peperomia magnoliae-folia to dehydration. Planta 83: 190–194

    CAS  Google Scholar 

  • Schneider K, Wells B, Schmelzer E, Salamini F, Bartels D (1993) Desiccation leads to the rapid accumulation of both cytosolic and chloroplastic proteins in the resurrection plant Craterostigma plantagineum. Planta 189: 120–131

    Article  CAS  Google Scholar 

  • Schwab K (1986) Morphologische, physiologische und biochemische Anpassungsstrategien austrocknungstoleranter höherer Pflanzen. PhD thesis, University of Würzburg

    Google Scholar 

  • Schwab K, Gaff DF (1986) Sugar and ion contents in leaf tissues of several drought tolerant and drought sensitive plants. J Plant Physiol 125: 257–265

    CAS  Google Scholar 

  • Schwab K, Heber U (1984) Thylakoid membrane stability in drought tolerant and drought sensitive species. Planta 161: 37–45

    Article  CAS  Google Scholar 

  • Sgherri CLM, Quartacci MF, Bochicchio A, Navari-Izzo F (1994) Defence mechanisms against production of free radicals in cells of ‘resurrection’ plants. Proc R Soc Edinburgh [B] 102: 291–294

    Google Scholar 

  • Sherwin HW, Berjak P, Farrant JM, Pammenter NW (1995) The importance of critical cell volume and cell wall elasticity in the ability to withstand desiccation. In: Beihassan E, Schlicht F, Cuellar T, Lewicki S (eds) Integrated study on drought tolerance of higher plants. INRA, Paris

    Google Scholar 

  • Smirnoff N, Colombé SV (1988) Drought influences the activity of enzymes of the chloroplast hydrogen peroxide scavenging system. J Exp Bot 39: 1097–1108

    Article  CAS  Google Scholar 

  • Spickett CM, Smirnoff N, Ratcliffe RG (1992) Metabolic response of maize roots to hyperosmotic shock. An in vivo 31P nuclear magnetic resonance study. Plant Physiol 99: 856–863

    Article  PubMed  CAS  Google Scholar 

  • Sutaryono YA, Gaff DF (1992) Grazing potential of desiccation tolerant tropical and subtropical grasses. Trans Malaysian Soc Plant Physiol 3: 180–183

    Google Scholar 

  • Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259: 508–510

    Article  PubMed  CAS  Google Scholar 

  • Tuba Z, Lichtenthaler HK, Maroti I, Csintalan Z (1993) Resynthesis of thylakoids and functional chloroplasts in the desiccated leaves of the poikilochlorophyllous plant Xerophyta scabrida upon rehydration. J Plant Physiol 142: 742–748

    CAS  Google Scholar 

  • Turner NC, Henson IE (1989) Comparative water relations and gas exchange of wheat and lupins in the field. In: Kreeb KH, Richter H, Hinckley TM (eds) Structural and functional responses to environmental stresses: water shortage. SBP Academic Publishing, The Hague, pp 293–304

    Google Scholar 

  • Walter H (1955) The water economy and the hydrature of plants. Annu Rev Plant Physiol 6: 239–252

    Article  CAS  Google Scholar 

  • Walter H, Volk OH (1954) Grundlagen der Weidewirtschaft in Südwestafrika. Ulmer, Stuttgart

    Google Scholar 

  • Weiler EW (1980) Radioimmunoassays for the differential and direct analysis of free and conjugated abscisic acid in plant extracts. Planta 148: 262–272

    Article  CAS  Google Scholar 

  • Werner O, Bopp M (1993) The influence of ABA and IAA on in vitro phosphorylation of proteins in Funaria hygrometrica Hedw. J Plant Phys 141: 93–97

    CAS  Google Scholar 

  • Werner O, Ros Espin RM, Bopp M, Atzorn R (1991) Abscisic-acid-induced drought tolerance in Funaria hygrometrica Hedw. Planta 186: 99–103

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Koizumi M, Urao S, Shinozaki K (1992) Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana. Plant Cell Physiol 33: 217–224

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hartung, W., Schiller, P., Dietz, KJ. (1998). Physiology of Poikilohydric Plants. In: Behnke, HD., Esser, K., Kadereit, J.W., Lüttge, U., Runge, M. (eds) Progress in Botany. Progress in Botany, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80446-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80446-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80448-9

  • Online ISBN: 978-3-642-80446-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics