Skip to main content

Semantic Word Cloud Representations: Hardness and Approximation Algorithms

  • Conference paper
LATIN 2014: Theoretical Informatics (LATIN 2014)

Abstract

We study a geometric representation problem, where we are given a set \(\mathcal B\) of axis-aligned rectangles (boxes) with fixed dimensions and a graph with vertex set \(\mathcal B\). The task is to place the rectangles without overlap such that two rectangles touch if the graph contains an edge between them. We call this problem Contact Representation of Word Networks (Crown). It formalizes the geometric problem behind drawing word clouds in which semantically related words are close to each other. Here, we represent words by rectangles and semantic relationships by edges.

We show that Crown is strongly NP-hard even if restricted to trees and weakly NP-hard if restricted to stars. We also consider the optimization problem Max-Crown where each adjacency induces a certain profit and the task is to maximize the sum of the profits. For this problem, we present constant-factor approximations for several graph classes, namely stars, trees, planar graphs, and graphs of bounded degree. Finally, we evaluate the algorithms experimentally and show that our best method improves upon the best existing heuristic by 45%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barth, L., Fabrikant, S.I., Kobourov, S., Lubiw, A., Nöllenburg, M., Okamoto, Y., Pupyrev, S., Squarcella, C., Ueckerdt, T., Wolff, A.: Semantic word cloud representations: Hardness and approximation algorithms. Arxiv report arxiv.org/abs/1311.4778 (2013)

    Google Scholar 

  2. Buchsbaum, A.L., Gansner, E.R., Procopiuc, C.M., Venkatasubramanian, S.: Rectangular layouts and contact graphs. ACM Trans. Algorithms 4(1) (2008)

    Google Scholar 

  3. Chekuri, C., Khanna, S.: A polynomial time approximation scheme for the multiple knapsack problem. SIAM J. Comput. 35(3), 713–728 (2005)

    Article  MathSciNet  Google Scholar 

  4. Collins, C., Viégas, F.B., Wattenberg, M.: Parallel tag clouds to explore and analyze faceted text corpora. In: Proc. IEEE Symp. Vis. Analytics Sci. Tech., pp. 91–98 (2009)

    Google Scholar 

  5. Cui, W., Wu, Y., Liu, S., Wei, F., Zhou, M., Qu, H.: Context-preserving dynamic word cloud visualization. IEEE Comput. Graphics Appl. 30(6), 42–53 (2010)

    Article  Google Scholar 

  6. Dumais, S.T.: Latent semantic analysis. Annu. Rev. Inform. Sci. Tech. 38(1), 188–230 (2004)

    Article  Google Scholar 

  7. Dwyer, T., Marriott, K., Stuckey, P.J.: Fast node overlap removal. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 153–164. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Eppstein, D., Mumford, E., Speckmann, B., Verbeek, K.: Area-universal and constrained rectangular layouts. SIAM J. Comput. 41(3), 537–564 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Felsner, S.: Rectangle and square representations of planar graphs. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 213–248. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Fleischer, L., Goemans, M.X., Mirrokni, V.S., Sviridenko, M.: Tight approximation algorithms for maximum separable assignment problems. Math. Oper. Res. 36(3), 416–431 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gansner, E.R., Hu, Y.: Efficient, proximity-preserving node overlap removal. J. Graph Algortihms Appl. 14(1), 53–74 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    Google Scholar 

  13. Hakimi, S.L., Mitchem, J., Schmeichel, E.F.: Star arboricity of graphs. Discrete Math. 149(1-3), 93–98 (1996)

    Google Scholar 

  14. Koh, K., Lee, B., Kim, B.H., Seo, J.: Maniwordle: Providing flexible control over Wordle. IEEE Trans. Vis. Comput. Graph. 16(6), 1190–1197 (2010)

    Article  Google Scholar 

  15. Lagus, K., Honkela, T., Kaski, S., Kohonen, T.: Self-organizing maps of document collections: A new approach to interactive exploration. In: Simoudis, E., Han, J., Fayyad, U.M. (eds.) KDD 1996, pp. 238–243. AAAI Press (1996)

    Google Scholar 

  16. Leung, J.Y.T., Tam, T.W., Wong, C., Young, G.H., Chin, F.Y.: Packing squares into a square. J. Parallel Distrib. Comput. 10(3), 271–275 (1990)

    Article  MathSciNet  Google Scholar 

  17. Nguyen, C.T., Shen, J., Hou, M., Sheng, L., Miller, W., Zhang, L.: Approximating the spanning star forest problem and its application to genomic sequence alignment. SIAM J. Comput. 38(3), 946–962 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nocaj, A., Brandes, U.: Organizing search results with a reference map. IEEE Trans. Vis. Comput. Graphics 18(12), 2546–2555 (2012)

    Article  Google Scholar 

  19. Nöllenburg, M., Prutkin, R., Rutter, I.: Edge-weighted contact representations of planar graphs. J. Graph Algorithms Appl. 17(4), 441–473 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Petersen, J.: Die Theorie der regulären Graphen. Acta Mathematica 15(1), 193–220 (1891)

    Article  MATH  MathSciNet  Google Scholar 

  21. Raisz, E.: The rectangular statistical cartogram. Geogr. Review 24(3), 292–296 (1934)

    Article  Google Scholar 

  22. Thomassen, C.: Interval representations of planar graphs. J. Combin. Theory, Ser. B 40(1), 9–20 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Viégas, F.B., Wattenberg, M., Feinberg, J.: Participatory visualization with Wordle. IEEE Trans. Vis. Comput. Graphics 15(6), 1137–1144 (2009)

    Article  Google Scholar 

  24. Wu, Y., Provan, T., Wei, F., Liu, S., Ma, K.L.: Semantic-preserving word clouds by seam carving. Comput. Graphics Forum 30(3), 741–750 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barth, L. et al. (2014). Semantic Word Cloud Representations: Hardness and Approximation Algorithms. In: Pardo, A., Viola, A. (eds) LATIN 2014: Theoretical Informatics. LATIN 2014. Lecture Notes in Computer Science, vol 8392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54423-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54423-1_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54422-4

  • Online ISBN: 978-3-642-54423-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics